Домой ОТП банк Информационные технологии автоматизированного проектирования. Системы автоматизированного проектирования (сапр)

Информационные технологии автоматизированного проектирования. Системы автоматизированного проектирования (сапр)

Аннотация: В лекции приводятся основные определения, назначение и принципы систем автоматизированного проектирования (САПР). Даются сущность и схема функционирования САПР. Показано место САПР РЭС среди других автоматизированных систем. Рассматриваются структура и разновидности САПР. Основное назначение лекции - показать сущность процесса проектирования РЭС, основные принципы проектирования. Особенное внимание уделяется системному подходу к проектированию конструкции и технологии производства РЭС

4.1. Определение, назначение, цель

По определению, САПР - это организационно-техническая система, состоящая из совокупности комплекса средств автоматизации проектирования и коллектива специалистов подразделений проектной организации , выполняющая автоматизированное проектирование объекта , которое является результатом деятельности проектной организации [ , ].

Из этого определения следует, что САПР - это не средство автоматизации, а система деятельности людей по проектированию объектов . Поэтому автоматизация проектирования как научно-техническая дисциплина отличается от обычного использования ЭВМ в процессах проектирования тем, что в ней рассматриваются вопросы построения системы, а не совокупность отдельных задач. Эта дисциплина является методологической, поскольку она обобщает черты, являющиеся общими для разных конкретных приложений .

Идеальная схема функционирования САПР представлена на рис. 4.1 .


Рис. 4.1.

Эта схема идеальна в смысле полного соответствия формулировке согласно существующим стандартам и несоответствия реально действующим системам, в которых далеко не все проектные работы выполняются с помощью средств автоматизации и не все проектировщики пользуются этими средствами.

Проектировщики, как следует из определения, относятся к САПР . Это утверждение вполне правомерно, т. к. САПР - это система автоматизированного, а не автоматического проектирования. Это значит, что часть операций проектирования может и всегда будет выполняться человеком. При этом в более совершенных системах доля работ , выполняемых человеком, будет меньше, но содержание этих работ будет более творческим, а роль человека в большинстве случаев - более ответственной.

Из определения САПР следует, что целью ее функционирования является проектирование. Как уже было сказано, проектирование - это процесс переработки информации, приводящий в конечном счете к получению полного представления о проектируемом объекте и способах его изготовления .

В практике неавтоматизированного проектирования полное описание проектируемого объекта и способов его изготовления содержит проект изделия и техническую документацию. Для условия автоматизированного проектирования еще не узаконено названия конечного продукта проектирования, содержащего данные об объекте , и технологии его создания. На практике его называют по -прежнему "проектом".

Проектирование - это один из наиболее сложных видов интеллектуальной работы, выполняемой человеком. Более того, процесс проектирования сложных объектов не под силу одному человеку и выполняется творческим коллективом. Это, в свою очередь , делает процесс проектирования еще более сложным и трудно поддающимся формализации. Для автоматизации такого процесса необходимо четко знать, что в действительности он собой представляет и как выполняется разработчиками. Опыт свидетельствует, что изучение процессов проектирования и их формализация давались специалистам с большим трудом, поэтому автоматизация проектирования всюду осуществлялась поэтапно, охватывая последовательно все новые проектные операции . Соответственно, поэтапно создавались новые и совершенствовались старые системы. Чем на большее число частей разбита система, тем труднее правильно сформулировать исходные данные для каждой части, но тем легче провести оптимизацию.

Объектом автоматизации проектирования являются работы, действия человека, которые он выполняет в процессе проектирования. А то, что проектируют, называют объектом проектирования .

Человек может проектировать дом, машину, технологический процесс , промышленное изделие. Такие же объекты призвана проектировать САПР . При этом разделяют САПР изделия ( САПР И) и САПР технологических процессов (САПР ТП ).

Следовательно, объекты проектирования не являются объектами автоматизации проектирования . В производственной практике объектом автоматизации проектирования является вся совокупность действий проектировщиков, разрабатывающих изделие или технологический процесс , или то и другое, и оформляющих результаты разработок в виде конструкторской, технологической и эксплуатационной документаций.

Разделив весь процесс проектирования на этапы и операции , можно описать их с помощью определенных математических методов и определить инструментальные средства для их автоматизации. Затем необходимо рассмотреть выделенные проектные операции и средства автоматизации в комплексе и найти способы сопряжения их в единую систему, отвечающую поставленным целям.

При проектировании сложного объекта различные проектные операции многократно повторяются. Это связано с тем, что проектирование представляет собой закономерно развивающийся процесс. Начинается он с выработки общей концепции проектируемого объекта , на ее основе - эскизного проекта . Далее приближенные решения (прикидки) эскизного проекта уточняются на всех последующих стадиях проектирования. В целом такой процесс можно представить в виде спирали. На нижнем витке спирали находится концепция проектируемого объекта , на верхнем - окончательные данные о спроектированном объекте . На каждом витке спирали выполняют, с точки зрения технологии обработки информации, идентичные операции , но в увеличивающемся объеме. Следовательно, инструментальные средства автоматизации повторяющихся операций могут быть одни и те же.

Практически решить в полном объеме задачу формализации всего процесса проектирования очень сложно, однако если будет автоматизирована хотя бы часть проектных операций, это себя все равно оправдает, т. к. позволит в дальнейшем развивать созданную САПР на основе более совершенных технических решений и с меньшими затратами ресурсов.

В целом для всех этапов проектирования изделий и технологии их изготовления можно выделить следующие основные виды типовых операций обработки информации:

  • поиск и выбор из всевозможных источников нужной информации;
  • анализ выбранной информации;
  • выполнение расчетов;
  • принятие проектных решений;
  • оформление проектных решений в виде, удобном для дальнейшего использования (на последующих стадиях проектирования, при изготовлении или эксплуатации изделия).

Автоматизация перечисленных операций обработки информации и процессов управления использованием информации на всех стадиях проектирования составляет сущность функционирования современных САПР .

Каковы основные черты систем автоматизированного проектирования и их принципиальные отличия от "позадачных" методов автоматизации?

Первой характерной особенностью является возможность комплексного решения общей задачи проектирования, установления тесной связи между частными задачами, т. е. возможность интенсивного обмена информацией и взаимодействие не только отдельных процедур, но и этапов проектирования. Например, применительно к техническому (конструкторскому) этапу проектирования САПР РЭС позволяет решать задачи компоновки, размещения и трассировки в тесной взаимосвязи, которая должна быть заложена в технических и программных средствах системы.

Применительно к системам более высокого уровня можно говорить об установлении тесной информационной связи между схемотехническим и техническим этапами проектирования. Такие системы позволяют создавать радиоэлектронные средства, более эффективные с точки зрения комплекса функциональных и конструкторско-технологических требований.

Вторым отличием САПР РЭС является интерактивный режим проектирования, при котором осуществляется непрерывный процесс диалога "человек-машина". Сколь ни сложны и изощренны формальные методы проектирования, сколь ни велика мощность вычислительных средств, невозможно создать сложную аппаратуру без творческого участия человека. Системы автоматизации проектирования по своему замыслу должны не заменять конструктора, а выступать мощным инструментом его творческой деятельности.

Третья особенность САПР РЭС заключается в возможности имитационного моделирования радиоэлектронных систем в условиях работы, близких к реальным. Имитационное моделирование дает возможность предвидеть реакцию проектируемого объекта на самые различные возмущения, позволяет конструктору "видеть" плоды своего труда в действии без макетирования. Ценность этой особенности САПР заключается в том, что в большинстве случаев крайне трудно сформулировать системный критерий эффективности РЭС. Эффективность связана с большим числом требований различного характера и зависит от большого числа параметров РЭС и внешних факторов. Поэтому в сложных задачах проектирования практически невозможно формализовать процедуру поиска оптимального по критерию комплексной эффективности решения. Имитационное моделирование позволяет провести испытания различных вариантов решения и выбрать лучший, причем сделать это быстро и учесть всевозможные факторы и возмущения.

Четвертая особенность заключается в значительном усложнении программного и информационного обеспечения проектирования. Речь идет не только о количественном, объемном увеличении, но и об идеологическом усложнении, которое связано с необходимостью создания языков общения проектировщика и ЭВМ, развитых банков данных, программ информационного обмена между составными частями системы, программ проектирования. В результате проектирования создаются новые, более совершенные РЭС, отличающиеся от своих аналогов и прототипов более высокой эффективностью за счет использования новых физических явлений и принципов функционирования, более совершенной элементной базы и структуры, улучшенных конструкций и прогрессивных технологических процессов.

4.2. Принципы создания систем автоматизированного проектирования конструкции и технологии

При создании САПР руководствуются следующими общесистемными принципами:

  1. Принцип включения состоит в том, что требования к созданию, функционированию и развитию САПР определяются со стороны более сложной системы, включающей в себя САПР в качестве подсистемы. Такой сложной системой может быть, например, комплексная система АСНИ - САПР - АСУТП предприятия, САПР отрасли и т. п.
  2. Принцип системного единства предусматривает обеспечение целостности САПР за счет связи между ее подсистемами и функционирования подсистемы управления САПР.
  3. Принцип комплексности требует связности проектирования отдельных элементов и всего объекта в целом на всех стадиях проектирования.
  4. Принцип информационного единства предопределяет информационную согласованность отдельных подсистем и компонентов САПР. Это означает, что в средствах обеспечения компонентов САПР должны использоваться единые термины, символы, условные обозначения, проблемно-ориентированные языки программирования и способы представления информации, которые обычно устанавливаются соответствующими нормативными документами. Принцип информационного единства предусматривает, в частности, размещение всех файлов, используемых многократно при проектировании различных объектов , в банках данных. За счет информационного единства результаты решения одной задачи в САПР без какой-либо перекомпоновки или переработки полученных массивов данных могут быть использованы в качестве исходной информации для других задач проектирования.
  5. Принцип совместимости состоит в том, что языки, коды, информационные и технические характеристики структурных связей между подсистемами и компонентами САПР должны быть согласованы так, чтобы обеспечить совместное функционирование всех подсистем и сохранить открытую структуру САПР в целом. Так, введение каких-либо новых технических или программных средств в САПР не должно приводить к каким-либо изменениям уже эксплуатируемых средств.
  6. Принцип инвариантности предусматривает, что подсистемы и компоненты САПР должны быть по возможности универсальными или типовыми, т. е. инвариантными к проектируемым объектам и отраслевой специфике. Применительно ко всем компонентам САПР это, конечно, невозможно. Однако многие компоненты, например программы оптимизации, обработки массивов данных и другие, могут быть сделаны одинаковыми для разных технических объектов.
  7. В результате проектирования создаются новые, более совершенные РЭС, отличающиеся от своих аналогов и прототипов более высокой эффективностью за счет использования новых физических явлений и принципов.

Сегодня на многих предприятиях применяются системы автоматизированного проектирования, или проще говоря САПР. Существует довольно большое количество поставщиков подобных решений. Возможности и функции таких систем проектирования, представленных специализированным программным обеспечением соответствующего назначения, могут быть самыми различными. В чем же состоит главная сущность систем автоматизированного проектирования? Какие особенности разработки таких систем можно отметить?

САПР – что это?

Итак, что же собой представляют системы автоматизированного проектирования? Под САПР подразумеваются автоматизированные системы, которые призваны реализовывать ту или иную информационную технологию путем проектирования. На практике САПР представляют собой технические системы, которые позволяют таким образом автоматизировать, обеспечить функционирование процессов, которые составляют разработку проектов. Под САПР в зависимости от контекста может иметься в виду:

— программное обеспечение, применяемое в качестве основного элемента соответствующей инфраструктуры;

— совокупность технических и кадровых систем (в том числе и тех, что предполагают использование САПР в виде программного обеспечения), применяемых на предприятии с целью автоматизации процесса разработки проектов;

Таким образом, можно выделить широкую и более узкую трактовку термина, о котором идет речь. Тяжело сказать, какая из этих трактовок чаще применяется в бизнесе. Все зависит от конкретной сферы использования систем автоматизированного проектирования, а также от тех задач, для решения которых предполагается применять данные системы. Так, например, в контексте отдельно взятого цеха на производстве, под САПР предполагается конкретная программа для автоматизированного проектирования. Если речь идет о стратегическом планировании развития организации, то такое понятие как САПР скорее всего будет соответствовать масштабной инфраструктуре, которая задействуется с целью повышения эффективности разработки различных проектов. Необходимо отметить, что сам термин САПР представляет собой аббревиатуру, которая может расшифровываться по-разному. В общем случае данная аббревиатура соответствует сочетанию слов «система автоматизированного проектирования». Также существуют и другие варианты расшифровки данной аббревиатуры. Например, довольно распространен вариант «система автоматизации проектных работ». По смыслу английским аналогом термина САПР является аббревиатура CAD, в некоторых случаях также используется CAX.Давайте более подробно рассмотрим следующий вопрос: в каких целях могут создаваться системы автоматизированного проектирования в машиностроении и других сферах?

САПР: цели создания

Основной целью разработки САПР является повышение эффективности труда специалистов предприятия, которые решают различные производственные задачи, в том числе и те, которые связаны с инженерным проектированием. В данном случае повышение эффективности может осуществляться за счет следующих факторов:

— снижения трудоемкости процесса проектирования;

— сокращения сроков реализации проектов;

— снижения себестоимости проектных работ, и издержек, связанных с эксплуатацией;

— обеспечение повышения качества инфраструктуры проектирования.

— снижение издержек на проведение испытаний и моделирование.

САПР – это инструмент, который позволяет добиться отмеченных преимуществ за счет следующих факторов:

— эффективная информационная поддержка специалистов, участвующих в разработке проектов;

— автоматизация документации;

— применение концепций параллельного проектирования;

— унификация различных решений;

— применение математического моделирования, как альтернативы дорогостоящим испытаниям;

— оптимизация методов проектирования;

— повышение качества процессов управления бизнесом.

Теперь давайте рассмотрим, в какой структуре может быть представлена система автоматического проектирования.

Структура САПР

В систему автоматизированного проектирования технологических процессов могут входить следующие компоненты:

— комплекс элементов автоматизации;

— программно-техническая инфраструктура;

— методические инструменты;

— элементы поддержки функциональности САПР.

Большое распространение получил подход, в соответствии с которым в структуре САПР следует выделять подсистемы. Ключевыми считаются:

— обслуживающие подсистемы, поддерживающие функционирование основных проектирующих компонентов САПР, инфраструктуры, поддержание программного обеспечения;

— проектирующие подсистемы, которые в зависимости от соотнесения с объектом разработки, могут быть представлены с объектными задачами или инвариантными, т.е. связанными с реализацией конкретных проектов или совокупностью нескольких.

САПР представляют собой системы, включающие в себя определенные функциональные компоненты. Давайте рассмотрим их основные особенности.

САПР: компоненты

Как мы уже знаем, автоматизированное проектирование систем управления и промышленной инфраструктуры, состоит из различных подсистем. Их составляющими в свою очередь являются компоненты, которые обеспечивают функционирование соответствующих элементов САПР. К примеру, это может быть аппаратное обеспечение, файл или программа. Компоненты, которые обладают общими признаками, формируют средства обеспечения систем проектирования. Они могут быть представлены следующими типами:

— техническое обеспечение, которое представляет собой совокупность различных технических средств, типа сетевых компонентов, компьютеров, измерительных приборов;

— математические модели, которые объединяют в себе те или иные алгоритмы, используемые с целью решения различных задач;

— программное обеспечение – системное и прикладное;

— информационное обеспечение, которое представляет собой совокупность различной информации, необходимой для внедрения проектирования;

— лингвистические модели, представляющие собой совокупность различных языков, применяемых в САПР с целью отражения сведений о проектировании;

— методическое обеспечение, представляющее собой совокупность различных методов подбора технологических концепций, подходов к обеспечению функционирования САПР для достижения максимальных результатов при реализации определенных проектов;

— организационное обеспечение, представленное в основном источниками, определяющими структуру проектной документации, а также характеристики системы автоматизации и то, как должны отображаться результаты реализации тех или иных проектов.

Можно классифицировать автоматизированные системы проектирования, обработки информации по различным критериям. Давайте рассмотрим несколько основных классификаций.

САПР: классификации

К наиболее распространенным критериям классификации САПР относится отраслевое назначение. Выделяют следующие типы:

  1. Автоматизированное проектирование инфраструктуры машиностроения;
  2. САПР для электронного оборудования;
  3. САПР в сфере строительства.

Первый тип систем САПР может быть использован в широком спектре отраслей: авиастроении, автомобилестроении, судостроении, производстве товаров народного потребления. Также соответствующая инфраструктура может быть использована с целью разработки как отдельных деталей, так и различных механизмов при использовании всевозможных подходов в рамках моделирования и проектирования.

Системы САПР второго типа используются для проектирования готового электронного оборудования и его отдельных элементов, например, интегральных микросхем, процессоров, и других типов аппаратного обеспечения.

САПР третьего типа могут быть задействованы с целью проектирования различных сооружений, зданий, элементов инфраструктуры.

Еще одним критерием, по которому можно классифицировать системы автоматизированного проектирования, является целевое назначение. Здесь выделяют:

— средства проектирования, используемые с целью автоматизации двумерных или трехмерных геометрических моделей, для формирования конструкторской документации;

— системы, используемые с целью разработки различных чертежей;

— системы, разработанные для геометрического моделирования;

— системы, предназначенные для автоматизации расчетов в рамках инженерных проектов и динамического моделирования;

— средства автоматизации, применяемые с целью технологической оптимизации проектов;

— системы, предназначенные для компьютерного анализа различных параметров по проектам.

Данная классификация считается условной.

В автоматизированную систему технологического проектирования может входить широкий спектр функций из числа перечисленных выше. Конкретный перечень возможностей САПР прежде всего определяет разработчик данной системы. Давайте рассмотрим, какие задачи он может решать.

Разработка САПР

Проектирование автоматизированных систем обработки информации, управления, программирования и реализации иных функций, направленных на повышение эффективности разработки проектов в тех или иных отраслях. Данный процесс характеризуется высоким уровнем сложности. Он требует от всех участников вложения значительных ресурсов – финансовых и трудовых.

Эксперты выделяют несколько основных принципов, в соответствии с которыми ведется разработка САПР. К ним относятся:

— унификация;

— открытость;

— интерактивность;

— комплексность.

Давайте рассмотрим эти принципы более подробно.

Основные принципы разработки САПР: унификация

Работа с системами автоматизированного проектирования на стадии разработки и в период использования соответствующей инфраструктуры предполагает следование принципу унификации. В соответствии с этим принципом, те или иные решения могут по схожим алгоритмам могут одинаково эффективно внедряться в различные отрасли производства. Этот принцип предполагает, что пользователь, который использует знакомый ему модуль САПР, или, например, методику автоматизированного проектирования в определенной среде, сможет без труда приспособить их к специфике использования в других условиях.

Большое значение унификация САПР имеет и с точки зрения развития предприятия, которое занимается разработкой соответствующей системы. Чем более универсальными будут подходы и модули, которые хозяйствующий субъект предлагает рынку, тем более интенсивным будет его рост. Возрастает и конкурентоспособность, и готовность новых потребителей к сотрудничеству.

Основные принципы разработки САПР: комплексность

Следующим принципом, характеризующим процесс проектирования САПР, является комплексность. Данный принцип предполагает, что производитель сможет наделить свою продукцию теми компонентами, которые позволят решать поставленные задачи на различных уровнях реализации проекта. Возможно, данный аспект является ключевым с точки зрения обеспечения конкурентоспособности продукта и освоения новых рынков. При этом необходимо учитывать, что комплексные решения должны удовлетворять остальным принципам разработки САПР, к которым относятся открытость.

Основные принципы разработки САПР: открытость

В данном контексте открытость может пониматься по-разному. Ее интерпретация во всех случаях будет уместна. Разработка системы автоматизированного проектирования представляет собой процесс, который, прежде всего, должен характеризоваться большой открытостью с точки зрения формирования обратной связи между разработчиком системы и ее пользователями. Человек, которые задействует такую систему, всегда должен иметь возможность информировать разработчика о возникающих проблемах, особенностях функционирования САПР при различных внешних условиях, а также передавать производителю свои пожелания относительно улучшения качества продукта. Также открытость при разработке САПР может выражаться в готовности производителя осуществлять активный мониторинг технических разработок, в том числе и от конкурирующих производителей, следить за новыми трендами. Ведущую роль в бизнесе в данном случае могут сыграть не только технологические подразделения, но и маркетологи компании, менеджеры, специалисты по PR. Открытость при разработке САПР также свидетельствует о том, что разработчик готов к прямому диалогу с другими поставщиками. Обмен технологиями позволяет создавать продукты, при помощи которых может быть осуществлено эффективное автоматизированное проектирование систем управления. Это также является значимым фактором повышения конкурентоспособности бренда, который поставляет САПР в тех или иных сегментах рынка.

Основные принципы разработки САПР: интерактивность

Еще одним важным принципом разработки САПР является интерактивность. Данный принцип предполагает создание разработчиком соответствующих систем интерфейсов, которые максимально облегчают процедуру их использования человеком, а также осуществления им необходимых коммуникаций с другими пользователями САПР. Еще одним аспектом интерактивности является обеспечение в необходимых случаях взаимодействия между различными моделями САПР в рамках формирования производственной инфраструктуры. Принцип интерактивности тесно связан с принципом унификации. Все дело в том, что обмен данными в рамках тех или иных интерактивных процедур будет наиболее эффективным только при условии необходимой стандартизации взаимодействии между субъектами. Это может быть выражено в унификации документов, файловых форматов, процедур, инженерных подходов при разработке проектов. Большое значение данный принцип играет в САПР, при помощи которых осуществляется проектирование информационных систем. В частности данная сфера применения САПР характеризуется высокой степенью потребности пользователей соответствующей инфраструктуры. Им как правило, требуется связь между большим количеством модулей САПР, регулярное, динамическое взаимодействие, осуществление оптимизации различных процедур, оперативное формирование отчетности. Только при условии достаточной интерактивности систем автоматизированного проектирования пользователь может рассчитывать на эффективное решение любых задач на производстве.

Автоматизация проектирования занимает особое место среди информационных технологий.

Проектирование – процесс составления описания, необходимого для создания в заданных условиях еще не существующего объекта или алгоритма его функционирования, на основе первичного описания данного объекта и (или) алгоритма его функционирования.

Объектами проектирования может быть продукция производственно-технического назначения (средства производства - технологическое оборудование и оснастка); технологические процессы, в результате реализации которых проекты объектов воплощаются в материально-вещественную форму; здания, инженерные сооружения; транспортные средства, средства связи, вычислительной техники; организационно-управленческие системы и т.д.

Цель процесса проектирования состоит, прежде всего, в том, чтобы на основе исходной информации, получаемой в процессе проектирования, разработать техническую документацию для изготовления объекта проектирования. Проектирование включает в себя разработку технического задания (ТЗ), отражающего потребности, и реализацию ТЗ в виде проектной документации.

Проектирование, по существу, представляет собой процесс управления с обратной связью. Техническое задание формирует входы, которые сравниваются с результатами проектирования, и если они не совпадают, цикл проектирования повторяется вновь до тех пор, пока отклонение от заданных технических требований не окажется в допустимых пределах.

Под автоматизацией проектирования понимают систематическое применение ЭВМ в процессе проектирования при научно обоснованном распределении функций между проектировщиком и ЭВМ и научно обоснованном выборе методов машинного решения задач.

Научно обоснованное распределение функций между человеком и ЭВМ подразумевает, что человек должен решать задачи, носящие творческий характер, а ЭВМ задачи, решение которых поддается алгоритмизации.

Автоматизированное проектирование – проектирование, при котором отдельные преобразования описаний объекта и (или) алгоритма его функционирования или алгоритма процесса, а также представления описаний на различных языках осуществляется взаимодействием человека и ЭВМ.

Автоматизированное проектирование обычно осуществляют в режиме диалога человека с машиной на основе применения специальных языков общения человека с машиной.

Автоматическое проектирование – проектирование, при котором все преобразования описаний объекта и (или) алгоритма его функционирования или алгоритма процесса, а также представление описаний на различных языках осуществляются без участия человека.

При автоматическом проектировании пуск соответствующего оборудования и ввод в ЭВМ первичного описания объекта осуществляет человек.

Задачи автоматического проектирования

1. Сокращение трудоемкости и сроков конструкторской подготовки производства.

2. Повышение качества конструкторской документации.

3. Сокращение трудоемкости и сроков технологической подготовки производства.

4. Повышение качества разрабатываемых технологических процессов.

5. Уменьшение числа инженерно-технических работников, занятых проектированием и конструированием.

Существенным отличием автоматизированного проектирования от неавтоматизированного является возможность замены дорогостоящего и занимающего много времени физического моделирования математическим моделированием.

Решение проблем автоматизации проектирования с помощью ЭВМ основывается на системном подходе, т.е. на создании и внедрении САПР – систем автоматического проектирования технических объектов, которые решают весь комплекс задач от анализа задания до разработки полного объема конструкторской и технологической документации. Это достигается за счет объединения современных технических средств и математического обеспечения, параметры и характеристики которых выбираются с максимальным учетом особенностей задач проектно-конструкторского процесса.

Система автоматизированного проектирования (САПР) комплекс средств автоматизации проектирования, взаимосвязанных с необходимыми подразделениями проектной организации или коллективом специалистов (пользователем системы), выполняющий автоматизированное проектирование.

Система автоматического проектирования комплекс средств автоматизации проектирования, взаимосвязанных с необходимыми подразделениями проектной организации или коллективом специалистов (пользователем системы), выполняющий автоматическое проектирование.

Интегрированная система автоматического проектирования система автоматического проектирования, имеющая альтернативное программное обеспечение и операционную систему автоматического проектирования, позволяющую выбирать совокупность машинных программ применительно к заданному объекту проектирования или классу объектов проектирования.

^

Системы автоматизированного проектирования

Близкими по своей структуре и функциям к системам автоматизации научных исследований оказываются системы автоматизированного проектирования (САПР).

САПР - комплекс программных и аппаратных средств, предназначенных для автоматизации процесса проектирования человеком технических изделий или продуктов интеллектуальной деятельности.

Проектирование новых изделий - основная задача изобретателей конструкторов, протекает в несколько этапов, таких как нормирование замысла, поиск физических принципов, обеспечивающих реализацию замыслов и требуемые значении конструкции, поиск конструктивных решений, их расчет и обоснование, создание опытного образца, разработка технологий промышленного изготовления. Если формирование замысла и поиск физических принципов пока остаются чисто творческими, не поддающимися автоматизации этапами, то при конструировании и расчетах с успехом могут быть применены САПР (рис. 4.2).

База данных, блок имитационного моделирования, расчетный блок и экспертная система выполняют функции, аналогичные функциям соответствующих блоков АСНИ. Вместо блока связи с измерительной аппаратурой в САПР имеется блок формирования заданий. Проектировщик вводит в блок техническое задание на проектирование, в котором указаны цели, которые необходимо достичь при проектировании, и все ограничения, которые нельзя нарушить. Блок подготовки технической документации облегчает создание технической документации для последующего изготовления изделия.

Рис 4.2 - Типовая схема САПР

Аппаратное обеспечение САПР составляет ЭВМ с набором устройств, необходимых для ввода и вывода графической информации (графопостроитель, световое перо, графический планшет и др.).

В настоящее время САПР является неотъемлемым атрибутом крупных конструкторских бюро и проектных организаций, работающих в различных предметных областях. Это важная сфера приложения идей и методов информатики. САПР широко применяется в архитектуре, электротехнике, электронике, машиностроении, авиакосмической технике и др.

    1. ^

      Геоинформационные системы и технологии

Геоинформационные системы (ГИС) и ГИС- технологии объединяют компьютерную картографию и системы управления базами данных. Концепция технологии ГИС состоит в создании многослойной электронной карты, опорный слой которой описывает географию территории, а каждый из остальных слоев - один из аспектов состояния территории. Тем самым ГИС-технологии определяют специфическую область работы с информацией.

Технология ГИС применима везде, где необходимо учитывать, обрабатывать и демонстрировать территориально распределенную информацию. Пользователями ГИС-технологии могут быть как организации, чья деятельность целиком базируется на земле владельцы нефтегазовых предприятий, экологические службы, жилищно-коммунальное хозяйство, так и многочисленные коммерческие предприятия - банки, страховые, торговые и строительные фирмы, чья успешная работа во многом зависит от правильного и своевременного учета территориального фактора.

В основе любой ГИС лежит информация о каком-либо участке земной поверхности: континенте, стране, городе, улице.

БД организуется в виде набора слоев информации. Основной шрифт содержит географически привязанную карту местности (топооснова). На него накладываются другие слои, несущие информацию об объектах, находящихся на данной территории: коммуникации, в том числе линии электропередач, нефте- и газопроводы, водопроводы, промышленные объекты, земельные участки, почвы, коммунальное хозяйство, землепользование и др.

В процессе создания и наложения слоев друг на друга между ними устанавливаются необходимые связи, что позволяет выполнять пространственные операции с объектами посредством моделирования и интеллектуальной обработки данных.

Как правило, информация представляется графически в векторном виде, что позволяет уменьшить объем хранимой информации и упростить операции по визуализации. С графической информацией связана текстовая, табличная, расчетная информация, координатная привязка к карте местности, видеоизображения, аудиокомментарии, БД с описанием объектов и их характеристик.

Многие ГИС включают аналитические функции, которые позволяют моделировать процессы, основываясь на картографической информации.

Программное ядро ГИС можно условно разделить на две подсистемы: СУБД и управление графическим выводом изображения. В качестве СУБД используют SQL-серверы.

Рассмотрим типовую схему организации ГИС-технологии, в настоящее время сложился основной набор компонентов, составляющих ГИС. К ним относятся:


  1. приобретение и предварительная подготовка данных;

  2. ввод и размещение данных;

  3. управление данными;

  4. манипуляция данными и их анализ;

  5. производство конечного продукта.
Функциональным назначением данных компонентов является:

Приобретение и подготовка исходных данных; включает манипуляции с исходными данными карт - материалами на твердой или бумажной основе, данными дистанционного зондирования, результатами полевых испытаний, текстовыми (табличными) материалами, с архивными данными.

^ Ввод и размещение пространственной и непространственной составляющих данных включает конвертирование информации во внутренние форматы системы и обеспечение структурной и логической совместимости всего множества порождаемых данных.

^ Управление данными предполагает наличие средств оптимальной внутренней организации данных, обеспечивающих эффективный доступ к ним.

Функции манипуляции и анализа представлены средствами, предназначенными для содержательной обработки данных в целях обработки и реорганизации данных. С точки зрения пользователя, эти функции являются главными в ГИС-технологиях, потому что позволяют получать новую информацию, необходимую для управления, исследовательских целей, прогнозирования.

^ Производство конечного продукта включает вывод полученных результатов для конечных потребителей ГИС. Эти продукты могут представлять карты, статистические отчеты, различные графики, стандартные формы определенных документов.

Кроме этого, каждый картографический объект может иметь атрибутивную информацию, в которой содержится информация, которая не обязательно должна отображаться на карте (например, число жильцов какого-либо дома и их социальный статус).

Подавляющее большинство ГИС-систем различают геометрическую и атрибутивную компоненты баз данных ГИС. Их часто называют также пространственными (картографическими, геометрическими) и непространственными (табличными, реляционными) данными.

Картографичекая информация представляется точками, кривыми и площадными объектами.

Атрибутивная информация содержит текстовые, числовые, логические данные о картографических объектах. Большинство современных ГИС-инструментариев позволяют хранить информацию в составе БД, как правило, реляционных.

Атрибутивная информация хранится в виде отдельных табличных файлов, как правило, в форматах реляционных баз данных систем DBF, PARADOX, ORACLE, INGRESS. Такой способ характерен как для западных коммерческих продуктов, так и современных отечественных разработок.

  1. ^

    ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ В РАСПРЕДЕЛЕННЫХ СИСТЕМАХ

    1. Технологии распределенных вычислений (РВ)

Современное производство требует высоких скоростей обработки информации, удобных форм ее хранения и передачи. Необходимо также иметь динамичные способы обращения к информации, способы поиска данных в заданные временные интервалы, чтобы реализовывать сложную математическую и логическую обработку данных.

Управление крупными предприятиями, управление экономикой на уровне страны требуют участия в этом процессе достаточно крупных коллективов. Такие коллективы могут располагаться в различных районах города, в различных регионах страны и даже в различных странах. Для решения задач управления, обеспечивающих реализацию экономической стратегии, становятся важными и актуальными скорость и удобство обмена информацией, а также возможность тесного взаимодействия всех участвующих в процессе выработки управленческих решений .

В эпоху централизованного использования ЭВМ с пакетной обработкой информации пользователи вычислительной техники предпочитали приобретать компьютеры, на которых можно было бы решать почти все классы их задач. Однако сложность решаемых задач обратно пропорциональна их количеству, и это приводило к неэффективному использованию вычислительной мощности ЭВМ при значительных материальных затратах. Нельзя не учитывать и тот факт, что доступ к ресурсам компьютеров был затруднен из-за существующей политики централизации вычислительных средств в одном месте.

Принцип централизованной обработки данных (рис. 5.1) не отвечал высоким требованиям к надежности процесса обработки, затруднял развитие систем и не мог обеспечить необходимые временные параметры при диалоговой обработке данных в многопользовательском режиме. Кратковременный выход из строя центральной ЭВМ приводил к роковым последствиям для системы в целом.


I

Рис. 5.1 - Система централизованной обработки данных

Появление персональных компьютеров потребовало нового подхода к организации систем обработки данных, к созданию новых информационных технологий. Возникло логически обоснованное требование перехода от использования отдельных ЭВМ в системах централизованной обработки данных к распределенной обработке данных (рис. 5.2).


Рис. 5.2 - Система распределенной обработки данных

Распределенная обработка данных - обработка данных, выполняемая на независимых, но связанных между собой компьютерах, представляющих распределенную систему.

В основе распределенных вычислений лежат две основные идеи:


  • много организационно и физически распределенных пользователей, одновременно работающих с общими данными - общей базой данных (пользователи с разными именами, которые могут располагаться на различных вычислительных установках, с различными полномочиями и задачами);

  • логически и физически распределенные данные, составляющие и образующие тем не менее, общую базу данных (отдельные таблицы, записи и даже поля могут располагаться на различных вычислительных установках или входить в различные локальные базы данных).
Дня реализации распределенной обработки данных были созданы многомашинные ассоциации, структура которых разрабатывается по одному из следующих направлений:

  • многомашинные вычислительные комплексы (МВК);

  • компьютерные (вычислительные) сети.
Многомашинный вычислительный комплекс - группа установленных рядом вычислительных машин, объединенных с помощью специальных средств сопряжения и выполняющих совместно единый информационно-вычислительный процесс. Под процессом понимается некоторая последовательность действий для решения задачи, определяемая программой.

Многомашинные вычислительные комплексы могут быть:


  • локальными, при условии установки компьютеров в одном помещении, не требующих для взаимосвязи специального оборудования и каналов связи;

  • дистанционными, если некоторые компьютеры комплекса установлены на значительном расстоянии от центральной ЭВМ и для передачи данных используются телефонные каналы связи.
Пример 1. Три ЭВМ объединены в комплекс для распределения заданий, поступающих на обработку. Одна из них выполняет диспетчерскую функцию и распределяет задания в зависимости от занятости одной из двух других обрабатывающих ЭВМ. Это локальный многомашинный комплекс.

Пример 2 . ЭВМ, осуществляющая сбор данных по некоторому региону, выполняет их предварительную обработку и передает для дальнейшего использования на центральную ЭВМ по телефонному каналу связи. Это дистанционный многомашинный комплекс.

Компьютерная (вычислительная) сеть - вычислительная система, включающая в себя несколько компьютеров, терминалов и других аппаратных средств, соединенных между собой линиями связи, обеспечивающими передачу данных

Терминал - устройство, предназначенное для взаимодействия пользователя с вычислительной системой или сетью ЭВМ. Состоит из устройства ввода (чаще всего это клавиатура) и одного или нескольких устройств вывода (дисплей, принтер и т.д.).

Автоматизация проектирования традиционно является одной из эффективных задач в сфере любого производства. Так, например, в машиностроении производственный цикл предприятия, определяемый временем нахождения деталей, узлов и готовых изделий в цехах, составляет 1 % всего времени от начала проектирования до выпуска готовой продукции, остальные 99% приходятся на опытно-конструкторскую, конструкторскую и технологическую подготовку производства. С другой стороны сложность решения задачи автоматизированного проектирования связана с многообразием и спецификой конкретных предметных областей.

Создание САПР-продуктов происходит в следующих направлениях:

    универсальный графический пакет для плоского черчения, объемного моделирования и фотореалистической визуализации;

    открытая графическая среда для создания приложений (собственно САПР для решения разнообразных проектных и технических задач в различных областях);

    графический редактор и графическая среда приложений;

    открытая среда конструкторского проектирования;

    САПР для непрофессионалов (домашнего использования).

Наиболее полно возможности САПР-продукта на уровне универсального графического пакета можно проследить на примере AutoCAD 2000 - новой версии самого популярного в России чертежного пакета. Рассмотрим основные особенности новой разработки фирмы AutoDesk:

    возможность работы с несколькими файлами чертежей в одном сеансе без потери производительности;

    контекстное всплывающее меню, включающее группу операций буферного обмена, повтора последней операции, отмены действий и возврата отмененного действия, вызова динамических интерактивных операций панорамирования и зуммирования и др.;

    наличие средств моделирования, позволяющих редактировать твердотельные объекты на уровне ребер и граней;

    возможность обращения к свойствам объектов;

    возможность выбора, группировки и фильтрации объектов по типам и свойствам;

    наличие технологии создания и редактирования блоков;

    возможность вставки в чертеж гиперссылок;

    включение Design Center - нового интерфейса технологии drag-and-drop для работы с блоками, внешними ссылками, файлами изображений и чертежей;

    управление толщиной (весом) линий напрямую с воспроизводством на экране;

    возможность работы со слоями без вывода на печать;

    наглядная работа с размерами и размерными стилями;

    наличие средств управления видами и системами координат;

    наличие нескольких режимов визуализации от проволочного каркаса до закраски;

    наличие средств обеспечения точности ввода при создании и редактировании;

    возможность компоновки чертежей и вывода на печать;

    работа с внешними базами данных;

    наличие средств настройки с помощью редакторов Visual LISP и Visual Basic;

    совместимость версий (в форматах DWG AutoCAD R14, R13 И форматах DFX AutoCAD R14, R13, R12).

По оценкам специалистов AutoCAD 2000 является почти идеальным универсальным 2D/ЗD (двух- и трехмерной геометрии) графическим пакетом средней ценовой категории.

Создание приложений связано со спецификой конкретной предметной области и решается эта задача на различных инструментальных платформах. Рассмотрим эту проблему применительно к САПР в радиоэлектронике. Радиоэлектроника является очень широкой научно-технической областью, поэтому остановимся только на проблеме проектирования радиоэлектронной аппаратуры (РЭА).

Основные требования, предъявляемые к САПР в области проектирования РЭА:

    решение всего комплекса задач проектирования РЭА: ввод структурной, функциональной и принципиальной схем; проведение расчетов; моделирование; конструирование аппаратуры; технологическая подготовка производства и изготовление;

    наличие полной библиотеки элементов и узлов, источников (генераторов) сигналов и шумов, с большим набором параметров и возможностью их легкой модификации;

    наличие справочной базы данных и ГОСТов;

    проведение необходимых расчетов (надежности, мощности, рабочих режимов и других параметров);

    возможность импорта и экспорта информации из других информационных систем;

    поддержка разнообразной периферии.

Процесс проектирования РЭА принято разбивать на этапы (системный, схемный, конструкторский, технологический, производственный), а саму проектируемую РЭА на уровни (система, подсистема или аппаратура, прибор, блок, ячейка или узел). Исходя из такого разбиения, представляется естественным требование, чтобы САПР поддерживали все этапы и уровни проектирования в полном объеме. К сожалению, на практике данный подход полностью не реализован.

В последние годы большой интерес вызывают САПР для непрофессионалов (домашнего использования). Области их использования: индивидуальное строительство, любительское моделирование и конструирование, планирование ландшафта, интерьера и др. Основные требования к системам подобного класса - приемлемая стоимость и невысокие требования к ресурсам компьютера.

Наиболее перспективным в области автоматизированного проектирования является использование открытых сред, основной особенностью которых является автоматизация процесса проектирования: выбор структуры объекта проектирования; необходимые Расчеты, включая геометрические и т.д. Примером реализации такого подхода является СПРУТ-технология, реализованная в виде графической оболочки со сменной проблемной ориентацией DiaCAD.

Однако DiaCAD является только составной частью СПРУТ-технологии и используется в тех случаях, когда удается формализовать процесс проектирования в данной предметной среде. Там, где это невозможно, используются средства интерактивно го черчения, так же как в известных средствах графического редактирования.

Возможности DiaCAD определяются перечнем решаемых задач:

    оперативная разработка чертежей с соблюдением требований ГОСТов;

    создание и использование иерархических графических баз данных;

    интерактивная параметризация чертежа и его типовых фрагментов;

    интеллектуальное редактирование (редактирование чертежа путем изменения значений размеров);

    получение параметризированных программ без программирования.

Функционально DiaCAD можно разделить на две части: среда администратора графической базы данных и среда конструктора.

Среда администратора графической базы данных предназначена для работы с иерархическими графическими базами данных и позволяет решать следующие задачи:

    создание базы данных с произвольной иерархической структурой;

    оперативный просмотр чертежа;

    копирование данных из одного чертежа в другой;

    вывод чертежа на графопостроитель или печатающее устройство.

Среда конструктора позволяет создавать и редактировать чертежи и геометрические модели.

Принципиальной отличительной особенностью DiaCAD является возможность создания на ее основе с использованием единой интегрированной среды СПРУТ собственной САПР.

Новое на сайте

>

Самое популярное