Домой Альфа Банк Выявление структуры временного ряда. Временной ряд и его составляющие

Выявление структуры временного ряда. Временной ряд и его составляющие


Реальные данные часто содержат все три компоненты. В большинстве случаев временной ряд можно представить как сумму или произведение трендовой , циклической и случайной компонент. В случае суммы имеет место аддитивная модель временного ряда:

(1)

в случае произведения – мультипликативная модель:

. (2)

Основная задача эконометрического исследования отдельного временного ряда – выявление количественного выражения каждой из компонент и использование полученной информации для прогноза будущих значений ряда или построение модели взаимосвязи двух или более временных рядов.

Сначала рассмотрим основные подходы к анализу отдельного временного ряда. Такой ряд может содержать, помимо случайной составляющей, либо только тенденцию, либо только сезонную (циклическую) компоненту, либо все компоненты вместе. Для того, чтобы выявить наличие той или иной неслучайной компоненты, исследуется корреляционная зависимость между последовательными уровнями временного ряда, или автокорреляция уровней ряда. Основная идея такого анализа заключается в том, что при наличии во временном ряде тенденции и циклических колебаний значения каждого последующего уровня ряда зависят от предыдущих.

Количественно автокорреляцию можно измерить с помощью линейного коэффициента корреляции между уровнями исходного временного ряда и уровнями этого ряда, сдвинутыми на несколько шагов во времени.

Коэффициент автокорреляции уровней ряда первого порядка измеряет зависимость между соседними уровнями ряда и т.е. при лаге 1.

Он вычисляется по следующей формуле:

(3)

где в качестве средних величин берутся значения:

(4)

В первом случае усредняются значения ряда, начиная со второго до последнего, во втором случае - значения ряда с первого до предпоследнего.

Формулу (3) можно представить как формулу выборочного коэффициента корреляции:

(5)

где в качестве переменной берется ряд а в качестве переменной ряд

Если значение коэффициента (3) близко к единице, это указывает на очень тесную зависимость между соседними уровнями временного ряда и о наличии во временном ряде сильной линейной тенденции.

Аналогично определяются коэффициенты автокорреляции более высоких порядков. Так, коэффициент автокорреляции второго порядка характеризует тесноту связи между уровнями и и определяется по формуле:

(6)

где в качестве одной средней величины берут среднюю уровней ряда с третьего до последнего, а в качестве другой - среднюю с первого уровня до

(7)

Число периодов, по которым рассчитывается коэффициент автокорреляции, называют лагом. С увеличением лага число пар значений, по которым рассчитывается коэффициент автокорреляции, уменьшается. Для обеспечения статистической достоверности максимальный лаг, как считают некоторые известные эконометристы, не должен превышать четверти общего объема выборки.

Коэффициент автокорреляции строится по аналогии с линейным коэффициентом корреляции, и поэтому он характеризует тесноту только линейной связи текущего и предыдущего уровней ряда. По нему можно судить о наличии линейной или близкой к линейной тенденции. Однако для некоторых временных рядов с сильной нелинейной тенденцией (например, параболической или экспоненциальной), коэффициент автокорреляции уровней ряда может приближаться к нулю.

Кроме того, по знаку коэффициента автокорреляции нельзя делать вывод о возрастающей или убывающей тенденции в уровнях ряда. Большинство временных рядов экономических данных имеют положительную автокорреляцию уровней, однако при этом не исключается убывающая тенденция.

Последовательность коэффициентов автокорреляции уровней различных порядков, начиная с первого, называется автокорреляционной функцией временного ряда. График зависимости ее значений от величины лага называется коррелограммой. Анализ автокорреляционной функции и коррелограммы помогает выявить структуру ряда. Здесь уместно привести следующие качественные рассуждения.

Если наиболее высоким является коэффициент автокорреляции первого порядка, очевидно, исследуемый ряд содержит только тенденцию. Если наиболее высоким оказался коэффициент автокорреляции порядка τ , ряд содержит циклические колебания с периодичностью в τ моментов времени. Если ни один из коэффициентов автокорреляции не является значимым, то либо ряд не содержит тенденции и циклических колебаний и имеет только случайную составляющую, либо ряд содержит сильную нелинейную тенденцию, для исследования которой нужно провести дополнительный анализ.

Пример . Пусть имеются данные об объёмах потребления электроэнергии жителями района за 16 кварталов, млн. квт.-ч:

t
y t 6,0 4,4 5,0 9,0 7,2 4,8 6,0 10,0 8,0 5,6 6,4 11,0 9,0 6,6 7,0 10,8

Нанесем эти значения на график:

Определим автокорреляционную функцию данного временного ряда. Рассчитаем коэффициент автокорреляции первого порядка. Для этого определим средние значения:

С учетом этих значений можно построить вспомогательную таблицу:

t y t
6,0 -1,0667 1,137778
4,4 -2,9867 -2,6667 3,185778 8,920178 7,111111
5,0 -2,3867 -2,0667 6,364444 5,696178 4,271111
9,0 1,6133 1,9333 -3,33422 2,602844 3,737778
7,2 -0,1867 0,1333 -0,36089 0,034844 0,017778
4,8 -2,5867 -2,2667 -0,34489 6,690844 5,137778
6,0 -1,3867 -1,0667 3,143111 1,922844 1,137778
10,0 2,6133 2,9333 -2,78756 6,829511 8,604444
8,0 0,6133 0,9333 1,799111 0,376178 0,871111
5,6 -1,7867 -1,4667 -1,66756 3,192178 2,151111
6,4 -0,9867 -0,6667 1,447111 0,973511 0,444444
11,0 3,6133 3,9333 -2,40889 13,05618 15,47111
9,0 1,6133 1,9333 6,345778 2,602844 3,737778
6,6 -0,7867 -0,4667 -1,52089 0,618844 0,217778
7,0 -0,3867 -0,0667 0,180444 0,149511 0,004444
10,8 3,4133 -0,22756 11,65084
Итог 9,813333 65,3173 54,0533

С помощью итоговых сумм подсчитаем величину коэффициента автокорреляции первого порядка:

.

Это значение свидетельствует о слабой зависимости текущих уровней ряда от непосредственно им предшествующих. Однако из графика очевидно наличие возрастающей тенденции уровней ряда, на которую накладываются циклические колебания.

Продолжая аналогичные расчеты для второго, третьего и т.д. порядков, получим автокорреляционную функцию, значения которой сведем в таблицу и построим по ней коррелограмму:

Лаг
0,16515 0,56687 0,11355 0,98302 0,11871 0,72204 0,00336 0,97384


Из коррелограммы видно, что наиболее высокий коэффициент корреляции наблюдается при значении лага, равном четырем, следовательно, ряд имеет циклические колебания периодичностью в четыре квартала. Это подтверждается и графическим анализом структуры ряда.

В случае, если при анализе структуры временного ряда обнаружена только тенденция и отсутствуют циклические колебания (случайная составляющая присутствует всегда), следует приступать к моделированию тенденции. Если же во временном ряде имеют место и циклические колебания, прежде всего следует исключить именно циклическую составляющую, и лишь затем приступать к моделированию тенденции. Выявление тенденции состоит в построении аналитической функции, характеризующей зависимость уровней ряда от времени, или тренда . Этот способ называют аналитическим выравниванием временного ряда .

Зависимость от времени может принимать разные формы, поэтому для её формализации используют различные виды функций:

Линейный тренд: ;

Гипербола: ;

Экспоненциальный тренд: (или );

Степенной тренд: ;

Параболический тренд второго и более высоких порядков:

Параметры каждого из трендов можно определить обычным МНК, используя в качестве независимой переменной время , а в качестве зависимой переменной – фактические уровни временного ряда y t (или уровни за вычетом циклической составляющей, если таковая была обнаружена). Для нелинейных трендов предварительно проводят стандартную процедуру их линеаризации.

Существует несколько способов определения типа тенденции. Чаще всего используют качественный анализ изучаемого процесса, построение и визуальный анализ графика зависимости уровней ряда от времени, расчет некоторых основных показателей динамики. В этих же целях можно использовать и коэффициенты автокорреляции уровней ряда. Тип тенденции можно определить путем сравнения коэффициентов автокорреляции первого порядка, рассчитанных по исходным и преобразованным уровням ряда. Если временной ряд имеет линейную тенденцию, то его соседние уровни y t и y t -1 тесно коррелируют. В этом случае коэффициент автокорреляции первого порядка уровней исходного ряда должен быть высоким. Если временной ряд содержит нелинейную тенденцию, например, в форме экспоненты, то коэффициент автокорреляции первого порядка по логарифмам уровней исходного ряда будет выше, чем соответствующий коэффициент, рассчитанный по уровням ряда. Чем сильнее выражена нелинейная тенденция в изучаемом временном ряде, тем в большей степени будут различаться значения указанных коэффициентов.

Выбор наилучшего уравнения в случае, если ряд содержит нелинейную тенденцию, можно осуществить путем перебора основных форм тренда, расчета по каждому уравнению скорректированного коэффициента детерминации и выбора уравнения тренда с максимальным значением этого коэффициента. Реализация этого метода относительно проста при компьютерной обработке данных.

При анализе временных рядов, содержащих сезонные или циклические колебания, наиболее простым подходом является расчет значений сезонной компоненты методом скользящей средней и построение аддитивной или мультипликативной модели временнóго ряда в форме (1) или (2).

Если амплитуда колебаний приблизительно постоянна, строят аддитивную модель (1), в которой значения сезонной компоненты предполагаются постоянными для различных циклов. Если амплитуда сезонных колебаний возрастает или уменьшается, строят мультипликативную модель (2), которая ставит уровни ряда в зависимость от значений сезонной компоненты.

Построение модели (1) или (2) сводится к расчету значений Т , S или Е для каждого уровня ряда. Процесс построения модели включает в себя следующие шаги:

1. Выравнивание исходного ряда методом скользящей средней.

2. Расчет значений сезонной компоненты S .

3. Устранение сезонной компоненты из исходных уровней ряда и получение выровненных данных (Т+Е ) в аддитивной или (Т·Е ) в мультипликативной модели.

4. Аналитическое выравнивание уровней (Т+Е ) или (Т·Е ) и расчет значений Т с использованием полученного уравнения тренда.

5. Расчет полученных по модели значений (Т+S ) или (Т·S )

6. Расчет абсолютных и относительных ошибок.

Пример . Построение аддитивной модели временного ряда . Рассмотрим данные об объёме потребления электроэнергии жителями района из ранее приведенного примера. Из анализа автокорреляционной функции было показано, что данный временнóй ряд содержит сезонные колебания периодичностью в 4 квартала. Объёмы потребления электроэнергии в осенне – зимний период (I и IV кварталы) выше, чем весной и летом (II и III кварталы). По графику этого ряда можно установить наличие приблизительно равной амплитуды колебаний. Это говорит о возможном наличии аддитивной модели. Рассчитаем её компоненты.

Шаг 1 . Проведем выравнивание исходных уровней ряда методом скользящей средней.

Поскольку циклические колебания имеют периодичность в 4 квартала, просуммируем уровни ряда последовательно за каждые 4 квартала со сдвигом на один момент времени и определим условные годовые объёмы потребления электроэнергии (колонка 3 в таблице 1).

Разделив полученные суммы на 4, найдем скользящие средние (колонка 4 таблицы 1). Полученные таким образом выровненные значения уже не содержат сезонной компоненты.

Поскольку скользящие средние получены осреднением четырех соседних уровней ряда, т.е. четного числа значений, они соответствуют серединам подынтервалов, состоящих из четверок чисел, т.е. должны располагаться между третьим и четвертым значениями четверок исходного ряда. Для того, чтобы скользящие средние располагались на одних временных отметках с исходным рядом, пары соседних скользящих средних ещё раз усредняются и получаются центрированные скользящие средние (колонка 5 таблицы 1). При этом теряются первые две и последние две отметки временного ряда, что связано с осреднением по четырем точкам.

Таблица 1

№ квартала Потребление электроэнергии y t Итого за четыре квартала Оценка сезонной компоненты
6,0
4,4
5,0 24,4 6,10 6,25 -1,250
9,0 25,6 6,40 6,45 2,550
7,2 26,0 6,50 6,625 0,575
4,8 27,0 6,75 6,875 -2,075
6,0 28,0 7,00 7,1 -1,100
10,0 28,8 7,20 7,3 2,700
8,0 29,6 7,40 7,45 0,550
5,6 30,0 7,50 7,625 -2,025
6,4 31,0 7,75 7,875 -1,475
11,0 32,0 8,00 8,125 2,875
9,0 33,0 8,25 8,325 0,675
6,6 33,6 8,40 8,375 -1,775
7,0 33,4 8,35
10,8

Шаг 2 . Найдем оценки сезонной компоненты как разность между фактическими уровнями ряда (колонка 2 таблицы 1) и центрированными скользящими средними (колонка 5). Эти значения помещаем в колонку 6 таблицы 1 и используем для расчета значений сезонной компоненты (таблица 2), которые представляют собой средние за каждый квартал (по всем годам) оценки сезонной компоненты S i . В моделях с сезонной компонентой обычно предполагается, что сезонные воздействия за период (в данном случае – за год) взаимопогашаются. В аддитивной модели это выражается в том, что сумма значений сезонной компоненты по всем точкам (здесь – по четырем кварталам) должна быть равна нулю.

Таблица 2

Для данной модели сумма средних оценок сезонной компоненты равна:

0,6-1,958-1,275+2,708=0,075.

Эта сумма оказалась не равной нулю, поэтому каждую оценку уменьшим на величину поправки, равной одной четверти полученного значения:

Δ=0,075/4=0,01875.

Рассчитаем скорректированные значения сезонной компоненты (они записаны в последней строке таблицы 2):

(8)

Эти значения при суммировании уже равны нулю:

0,581-1,977-1,294+2,69=0.

Шаг 3 . Исключаем влияние сезонной компоненты, вычитая её значения из каждого уровня исходного временного ряда. Получаем величины:

T+E=Y-S (9)

Эти значения рассчитываются в каждый момент времени и содержат только тенденцию и случайную компоненту (колонка 4 следующей таблицы):

Таблица 3

t T T+S E 2
6,0 0,581 5,419 5,902 6,483 -0,483 0,2332
4,4 -1,977 6,377 6,088 4,111 0,289 0,0833
5,0 -1,294 6,294 6,275 4,981 0,019 0,0004
9,0 2,69 6,310 6,461 9,151 -0,151 0,0228
7,2 0,581 6,619 6,648 7,229 -0,029 0,0008
4,8 -1,977 6,777 6,834 4,857 -0,057 0,0032
6,0 -1,294 7,294 7,020 5,726 0,274 0,0749
10,0 2,69 7,310 7,207 9,897 0,103 0,0107
8,0 0,581 7,419 7,393 7,974 0,026 0,0007
5,6 -1,977 7,577 7,580 5,603 -0,003 0,0000
6,4 -1,294 7,694 7,766 6,472 -0,072 0,0052
11,0 2,69 8,310 7,952 10,642 0,358 0,1278
9,0 0,581 8,419 8,139 8,720 0,280 0,0785
6,6 -1,977 8,577 8,325 6,348 0,252 0,0634
7,0 -1,294 8,294 8,512 7,218 -0,218 0,0474
10,8 2,69 8,110 8,698 11,388 -0,588 0,3458

Шаг 4 . Определим трендовую компоненту данной модели. Для этого проведем выравнивание ряда (Т+Е ) с помощью линейного тренда:

, найдем уровни Т для каждого момента времени (колонка 5 таблицы 3).

Шаг 5 . Найдем значения уровней ряда, полученные по аддитивной модели. Для этого прибавим к уровням Т значения сезонной компоненты для соответствующих кварталов, т.е. к значениям в колонке 5 таблицы 3 прибавим значения в колонке 3. Результаты операции представлены в колонке 6 таблицы 3.

Шаг 6 . В соответствии с методикой построения аддитивной модели расчет ошибки производим по формуле:

(10)

Это абсолютная ошибка. Численные значения абсолютных ошибок приведены в колонке 7 таблицы 3.

По аналогии с моделью регрессии для оценки качества построения модели или для выбора наилучшей модели можно применять сумму квадратов полученных абсолютных ошибок. Для данной аддитивной модели сумма квадратов абсолютных ошибок равна 1,10. По отношению к общей сумме квадратов отклонений уровней ряда от его среднего уровня, равной 71,59, эта величина составляет чуть более 1,5%. Следовательно, можно сказать, что аддитивная модель объясняет 98,5% общей вариации уровней временного ряда потребления электроэнергии за последние 16 кварталов.

Пример . Построение мультипликативной модели временного ряда . Пусть имеются поквартальные данные о прибыли компании за последние четыре года:

Таблица 4

График временного ряда свидетельствует о наличии сезонных колебаний периодичностью 4 квартала и общей убывающей тенденции уровней ряда:



Прибыль компании в весенне-летний период выше, чем в осенне-зимний период. Поскольку амплитуда сезонных колебаний уменьшается, можно предположить существование мультипликативной модели. Определим её компоненты.

Шаг 1 . Проведем выравнивание исходных уровней ряда методом скользящей средней. Методика, применяемая на этом шаге, полностью совпадает с методикой аддитивной модели. Результаты расчетов оценок сезонной компоненты представлены в таблице:

Таблица 5

№ квартала Прибыль компании Итого за четыре квартала Скользящая средняя за четыре квартала Центрированная скользящая средняя Оценка сезонной компоненты
81,500 81,250 1,108
81,000 80,000 0,800
79,000 77,750 0,900
76,500 75,750 1,215
75,000 74,000 1,081
73,000 71,500 0,811
70,000 68,500 0,905
67,000 65,750 1,217
64,500 63,250 1,075
62,000 59,500 0,807
57,000 54,750 0,950
52,500 50,250 1,194
48,000

Шаг 2 . Найдем оценки сезонной компоненты как частное от деления фактических уровней ряда на центрированные скользящие средние (колонка 6 таблицы). Используем эти оценки для расчета значений сезонной компоненты S . Для этого найдем средние за каждый квартал оценки сезонной компоненты S i . Взаимопогашаемость сезонных воздействий в мультипликативной модели выражается в том, что сумма значений сезонной компоненты по всем кварталам должна равняться числу периодов в цикле. В нашем случае число периодов одного цикла (год) равно четырем кварталам. Результаты расчетов сведем в таблицу:

Таблица 6

Здесь сумма средних оценок сезонных компонент по всем четырем кварталам

не равна четырем. Чтобы эта сумма равнялась четырем, умножим каждое слагаемое на поправочный коэффициент

0,803 79,70 79,48 63,82 1,003 0,179 0,03 0,913 76,67 76,70 70,03 1,000 -0,030 0,00 1,202 76,54 73,93 88,86 1,035 3,139 9,85 1,082 73,94 71,15 76,99 1,039 3,013 9,08 0,803 72,23 68,38 54,91 1,056 3,093 9,57 0,913 67,91 65,60 59,90 1,035 2,105 4,43 1,202 66,56 62,83 75,52 1,059 4,482 20,08 1,082 62,85 60,05 64,98 1,047 3,024 9,14 0,803 59,78 57,28 45,99 1,044 2,007 4,03 0,913 56,96 54,50 49,76 1,045 2,240 5,02 1,202 49,92 51,73 62,18 0,965 -2,176 4,73 1,082 46,21 48,95 52,97 0,944 -2,966 8,79 0,803 37,36 46,18 37,08 0,809 -7,080 50,12

Шаг 3 . Разделим каждый уровень исходного ряда на соответствующие значения сезонной компоненты. Тем самым мы получим величины

, (12)

Шаг 4 . Определим трендовую компоненту в мультипликативной модели. Для этого рассчитаем параметры линейного тренда, используя уровни (Т+Е ). Уравнение тренда имеет вид:

Подставляя в это уравнение значения , найдем уровни Т для каждого момента времени (колонка 5 таблицы).

Шаг 5 . Найдем уровни ряда по мультипликативной модели, умножив уровни Т на значения сезонной компоненты для соответствующих кварталов (колонка 6 таблицы).

Шаг 6 . Расчет ошибок в мультипликативной модели произведем по формуле:

. (13)

Численные значения ошибок приведены в колонке 7 таблицы. Для того, чтобы сравнить мультипликативную модель и другие модели временного ряда, можно по аналогии с аддитивной моделью использовать сумму квадратов абсолютных ошибок. Абсолютные ошибки в мультипликативной модели определяются как:

. (14)

В данной модели сумма квадратов абсолютных ошибок составляет 207,4. Общая сумма квадратов отклонений фактических уровней этого ряда от среднего значения равна 5023. Таким образом, доля объясненной дисперсии уровней ряда составляет 95,9%.

Прогнозирование по аддитивной или мультипликативной модели временного ряда сводится к расчету будущего значения временного ряда по уравнению модели без случайной составляющей в виде

для аддитивной или

для мультипликативной модели.

Большинство эконометрических моделей строится как динамические эконометрические модели. Это означает, что моделирование причинно-следственных связей между переменными осуществляется во времени, а исходные данные представлены в форме временных рядов.

Временной ряд х t (t=1; n ) – ряд значений какого-либо показателя за несколько последовательных промежутков времени.

Каждый временной ряд х t складывается из следующих основных составляющих (компонентов):

  1. Тенденции, характеризующей общее направление динамики изучаемого явления. Аналитически тенденция выражается некоторой функцией времени, называемой трендом (Т ).
  2. Циклической или периодической составляющей, характеризующей циклические или периодические колебания изучаемого явления. Колебания представляют собой отклонения фактических уровней ряда от тренда. Объем продаж некоторых товаров подвержен сезонным колебаниям. Сезонные колебания (S ) – периодические колебания, которые имеют определенный и постоянный период равный годовому промежутку. Конъюнктурные колебания (К) связаны с большими экономическими циклами, период таких колебаний – несколько лет.
  3. Случайной составляющей, которая является результатом воздействия множества случайных факторов (Е ).
Тогда уровень ряда можно представить как функцию от этих составляющих (компонентов): =f(T, K, S, E).

В зависимости от взаимосвязи между составляющими может быть построена либо аддитивная модель : =T+K+S+E, либо мультипликативная модель : =T·K·S·E ряда динамики.

Для определения состава компонентов (структуры временного ряда) в модели временного ряда строят автокорреляционную функцию.
Автокорреляция – корреляционная связь между последовательными уровнями одного и того же ряда динамики (сдвинутыми на определенный промежуток времени L - лаг). То есть, автокорреляция - это связь между рядом: x 1 , x 2 , ... x n-l и рядом x 1+l , x 2+l , ...,x n , где L - положительное целое число. Автокорреляция может быть измерена коэффициентом автокорреляции:
,
где ,
– средний уровень ряда (x 1+L , x 2+L ,...,x n ),
средний уровень ряда (x 1 , x 2 ,..., x n-L),
s t , s t-L – средние квадратические отклонения, для рядов (x 1+L , x 2+L ,..., x n ) и (x 1 , x 2 ,..., x n-L ) соответственно.

Лаг (сдвиг во времени) определяет порядок коэффициента автокорреляции. Если L =1, то имеем коэффициент автокорреляции 1-ого порядка r t,t-1 , если L =2, то коэффициент автокорреляции 2-ого порядка r t,t- 2 и т.д. Следует учитывать, что с увеличением лага на единицу, число пар значений, по которым рассчитывается коэффициент автокорреляции уменьшается на 1. Поэтому обычно рекомендуют максимальный порядок коэффициента автокорреляции равный n /4.

Рассчитав несколько коэффициентов автокорреляции, можно определить лаг (L), при котором автокорреляция (r t,t-L ) наиболее высокая, выявив тем самым структуру временного ряда .

  1. Если наиболее высоким оказывается значение коэффициента автокорреляции первого порядка r t,t- 1 , то исследуемый ряд содержит только тенденцию.
  2. Если наиболее высоким оказался коэффициент автокорреляции r t,t-L порядка L , то ряд содержит колебания периодом L .
  3. Если ни один из r t,t-L не является значимым, можно сделать одно из двух предположений:
    • либо ряд не содержит тенденции и циклических колебаний, а его уровень определяется только случайной компонентой;
    • либо ряд содержит сильную нелинейную тенденцию, для выявления которой нужно провести дополнительный анализ.
Последовательность коэффициентов автокорреляции 1, 2 и т.д. порядков называют автокорреляционной функцией временного ряда. График зависимости значений коэффициентов автокорреляции от величины лага (порядка коэффициента автокорреляции) называют коррелограммой .

Для выявления закономерных колебаний внутри года при выполнении контрольной работы рекомендуется рассчитывать не меньше 4-х уровней коэффициентов автокорреляции.
Рассмотрим на примере как построить коррелограмму, чтобы определяется структуру временного ряда.
Пусть нам даны поквартальные данные об объеме выпуска некоторого товара некоторой фирмой –х (усл.ед.) за 3 года:


1993

1994

1995

1

2

3

4

1

2

3

4

1

2

3

4

410

560

715

500

520

740

975

670

705

950

1200

900

Чтобы построить коррелогорамму для нашего примера, исходный ряд динамики дополним рядами из уровней этого ряда, сдвинутыми во времени (таблица 6).
Таблица 6

t

1

2

3

4

5

6

7

8

9

10

11

12


х t

-

560

715

500

520

740

975

670

705

950

1200

900

r t,t-1 =0,537

x t-1

-

410

560

715

500

520

740

975

670

705

950

1200

х t

-

-

715

500

520

740

975

670

705

950

1200

900

r t,t-2 =0,085

х t-2

-

-

410

560

715

500

520

740

975

670

705

950

х t

-

-

-

500

520

740

975

670

705

950

1200

900

r t,t-3 =0,445

х t-3

-

-

-

410

560

715

500

520

740

975

670

705

х t

-

-

-

-

520

740

975

670

705

950

1200

900

r t,t-4 =0,990

х t-4

-

-

-

-

410

560

715

500

520

740

975

670

х t

-

-

-

-

-

740

975

670

705

950

1200

900

r t,t-5 =0,294

х t-5

-

-

-

-

-

410

560

715

500

520

740

975

Рассчитаем коэффициенты корреляции:
1-ого порядка для рядов х t и х t -1 ,
2-ого порядка для рядов х t и х t -2 ,
3-его порядка для рядов х t и х t -3 ,
4-ого порядка для рядов х t и х t -4,
5-ого порядка для рядов х t и х t -5

Результаты расчетов представлены в таблице 7.
Таблица 7


Лаг (порядок) – L

r t,t-L

Коррелограмма

1

0,537

****

2

0,085

*

3

0,445

***

4

0,990

*****

5

0,294

**

Вывод: в данном ряду динамики имеется тенденция (т.к. r t,t-1 =0,537 →1) и периодические колебания с периодом (L) равным 4, т.е. имеют место сезонные колебания (т.к. r t,t-4 =0,99 →1).

Построение модели временного ряда с сезонными колебаниями (аддитивная модель ).
Процесс построения модели временного ряда (х ), содержащего n уровней некоторого показателя за Z лет, с L сезонными колебаниями включает следующие шаги:
1) Выравнивание исходного ряда методом скользящей средней (х c ). Произведем выравнивание исходного ряда взятого из примера, рассмотренного выше, методом скользящей средней с периодом усреднения равным 3. Результаты представлены в таблице 9 (столбец 4).
2) Расчет значений сезонной составляющейS i , i=1;L , где L – число сезонов в году. Для нашего примера L =4 (сезоны - кварталы).
Расчет значений сезонных составляющих осуществляется после устранения тенденции из исходных уровней ряда: x-x c (столбец 5, таблица 9). Для дальнейшего расчета S i построим отдельную таблицу. Строки данной таблицы соответствуют сезонам, столбцы - годам. В теле таблицы находятся значения: x -x c . По этим данным рассчитываются средние оценки сезонных составляющих каждой строке (S c i) . Если сумма всех средних оценок равна нулю (), то данные средние и будут окончательными значениями сезонных составляющих (S i =S c i ). Если их сумма не равна нулю, то рассчитываются скорректированные значения сезонных составляющих вычитанием из средней оценки величины равной отношению суммы средних оценок к их общему числу (). Для нашего примера расчет значений S i представлен в таблице 8.
Таблица 8


Номер сезона

Год 1

Год 2

Год 3

Средняя оценка сезонной составляющей

Скорректированная оценка сезонной составляющей S i

1

-

-66,67

-70,00

-68,33

-67,15

2

-1,67

-5,00

-1,67

-2,78

-1,60

3

123,33

180 ,00

183,33

162,22

163,40

4

-78,33

-113,33

-

-95,83

-94,66

Итого




-4, 72

0

3) Устранение влияния сезонной составляющей из исходного ряда динамики : x S = x-S i . Результаты расчета x S для нашего примера представлены в столбце 6 таблицы 9.
4) Аналитическое выравнивание уровней x S (построение тренда): .
Расчет параметров при аналитическом выравнивании чаще всего производится с помощью метода наименьших квадратов (МНК). При этом поиск параметров для линейного уравнения тренда можно упростить, если отсчет времени производить так, чтобы сумма показателей времени изучаемого ряда динамики была равна нулю. Для этого вводится новая условная переменная времени t y , такая, что åt y =0. Уравнение тренда при этом будет следующим: .
При нечетном числе уровней ряда динамики для получения å t y =0 уровень, находящийся в середине ряда, принимается за условное начало отсчета времени (периоду или моменту времени, соответствующему данному уровню присваивается нулевое значение). Даты времени, расположенные левее этого уровня, обозначаются натуральными числами со знаком минус (-1 –2 –3 ...), а даты времени, расположенные правее этого уровня – натуральными числами со знаком плюс (1 2 3 ...).
Если число уровней ряда четное, периоды времени левой половины ряда (до середины) нумеруются –1, -3, -5 и т.д. А периоды правой половины - +1, +3, +5 и.т.д. При этом åt y будет равна 0.
Система нормальных уравнений (соответствующих МНК) преобразуется к виду:

Отсюда параметры уравнения рассчитываются по формулам:
.
Интерпретация параметров линейного уравнения тренда :
- уровень ряда за период времени t у =0;
- средний абсолютный прирост уровня ряда за единичный промежуток времени.
В нашем примере четное число уровней ряда: n=12. Следовательно, условная переменная времени для 6-ого элемента ряда будет равна –1, а для 7-ого +1. Значения переменной i y содержатся во 2-ом столбце таблицы 9.
Параметры линейного тренда будут: =14257,5/572=24,93; =8845/12=737,08. Это значит, что с каждым кварталом объем выпуска товара в среднем увеличивается на 2∙28,7 усл.ед. А средний за период с 1993 по 1995гг объем выпуска составил 738,75 усл.ед.
Рассчитаем значения трендовой компоненты по формуле (столбец 7 таблицы 9).
5) Учет сезонной составляющей в выровненных уровнях ряда (=T+S ). Результаты расчета для нашего примера представлены в столбце 8 таблицы 9.
6) Расчет абсолютной ошибки временного ряда (Е= x- ) осуществляется для оценки качества полученной модели. Результаты расчета для нашего примера представлены в столбце 9 таблицы 9.
Таблица 9

T

t у

x

x c

x- x c

x s

T


E

1

2

3

4

5

6

7

8

9

1

-11

410

-

-

477,15

462,9 0

395,75

14,25

2

-9

560

561,67

-1,67

561,60

512,75

511,15

48,85

3

-7

715

591,67

123,33

551,60

562,60

726,00

-11,01

4

-5

500

578,33

-78,33

594,65

612,45

517,80

-17,80

5

-3

520

586,67

-66,67

587,15

662,31

595,15

-75,15

6

-1

740

745 ,00

-5 ,00

741,60

712,16

710,56

29,44

7

1

975

795 ,00

180 ,00

811,60

762,00

925,41

49,59

8

3

670

783,33

-113,33

764,65

811,86

717,21

-47,21

9

5

705

775 ,00

-70 ,00

772,15

861,71

794,56

-89,56

10

7

950

951,67

-1,67

951,60

911,56

909,97

40,03

11

9

1200

1016,67

183,33

1036, 60

961,41

1124,82

75,18

12

11

900

-

-

994,65

1011,27

916,61

-16,61

Итого


8845



8845 ,00

8845 ,00

8845 ,00

16,61

Значимость параметров линейного уравнения тренда (Т ) определяется на основе t -критерия Стьюдента также как и в линейном парном регрессионном анализе.

Прогнозирование по аддитивной модели .
Пусть требуется дать прогноз уровня временного ряда на период (n +1). Точечный прогноз значения уровня временного ряда х n+1 в аддитивной модели есть сумма трендовой компоненты и сезонной компоненты (соответствующей i –ому сезону прогноза): =T n+1 +S i .
Для построения доверительного интервала прогноза нужно рассчитать среднюю ошибку прогноза:
m р = ,
где h - число параметров в уравнении тренда;
t yp – значение условной переменной времени для периода прогнозирования.
Затем рассчитаем предельную ошибку прогноза: D р =t a · m р ,
где t a - коэффициент доверия, определяемый по таблицам Стьюдента по уровню значимости α и числу степеней свободы равным (n-h ).
Окончательно получим: (-D р; +D р).

Понятие сезонных колебаний и сезонной составляющей

Методы распознавания типа тренда и оценки его параметров

Основные типы трендов

Виды и построение временных рядов

ТЕМА 6. ВРЕМЕННЫЕ РЯДЫ. ОСНОВНЫЕ ТИПЫ ТРЕНДОВ

План лекции:

Эконометрическую модель можно построить, используя 2 типа исходных данных:

1. данные, характеризующие совокупность различных объектов в определенный момент (периоды времени). Модели, построенные по этим данным, называются пространственными.

2. данные, характеризующие один объект за ряд последовательных периодов времени. Модели, построенные по этим данным, называются моделями временных рядов

В литературе встречаются также понятия ряда динамики или динамические ряды. Данные термины несколько отличаются по сущности от понятия временной ряд , поскольку не каждый ряд уровней за последовательные периоды времени на самом деле содержат динамику какого - либо показателя.

Термин динамика правильнее относить к изменениям, направленному развитию, наличию тенденций рассматриваемых показателей. Следовательно, временной ряд – это более общее понятии, включающее, как динамические, так и статистические последовательности уровней какого-либо показателя.

Временной ряд – это последовательность упорядоченных во времени числовых показателей, характеризующих уровень состояния и изменения изучаемого явления.

Классификация временных рядов.

Каждый временной ряд включает 2 обязательных элемента:

2. конкретное значение показателей (уровень ряда)

Временной ряд различаю по следующим признакам:

1. повремени:

а) моментный ряд, характеризующий изучаемое явление в конкретный момент времени

б) интервальный, т.е., уровень ряда, характеризующий признак за определенный период времени

2. по форме представления:

а) абсолютных величин

б) относительных величин

в) средних величин

3. по расстоянию между датами или интервалами времени:

а) полные ряды, когда даты следуют друг за другом с равными интервалами-

б) неполные.

а) частных показателей, характеризующих явления односторонне, изолированных

б) ряды агрегированных показателей, т.е. характеризующих явления комплексно.

Каждый уровень временного ряда формируется под воздействием большого числа факторов. Условно их можно подразделить на 3 группы:

1) факторы, формирующие тенденцию ряда

2) факторы, формирующие цикличность колебаний ряда


3) случайные факторы

При статистическом изучении динамики, необходимо четко разделять 2 основных ее элемента:

1) тенденцию

2) колеблемость,

чтобы с помощью специальных показателей дать каждому из них, количественную характеристику

Колеблемость – это отклонение уровней отдельных периодов времени от тенденции динамики.

Тренд – это устойчивая тенденция во временном ряду, более или менее свободная от случайных колебаний.

Тенденции изменения показателей сложных общественных явлений только приближенно можно выразить тем или иным уравнением, линией тренда.

Во временных рядах обычно различают тенденции трех видов.

Тенденция среднего уровня выражается обычно с помощью ма­тематического уравнения линии, вокруг которой варьируют фактические уровни исследуемого явления. Уравнение имеет следующий вид: ƒ.

Смысл этой функции заключается в том, что значения тренда в отдельные моменты времени выступают математически­ми ожиданиями ряда динамики.

Тенденция дисперсии характеризует тенденцию изменения отклонений между эмпирическими уровнями и детерминированной компонентой ряда.

Тенденция автокорреляции характеризует связь между отдельными уровнями ряда динамики.

Общие составляющие компоненты временного ряда y или :

: Регулярная (основная) ком­понента, характе­ризующая общую тенденцию ряда (тренд)

v:Сезонная компо­нента (внутригодичные колеба­ния) в общем ви­де - циклическая составляющая

e: Случайная ком­понента (случай­ные отклонения).

Как видим, все компоненты, которые формируют уровень временного ряда, подразделяются на три группы. Основной со­ставляющей является тренд. Значения сезонной и случайной компонент остаются после выделения из него трендовой состав­ляющей.

Если все составляющие компоненты найдены верно, то ма­тематическое ожидание случайной компоненты равно нулю и ее колебания около среднего значения постоянны.

При различных сочетаниях в изучаемом явлении этих элементов, временной ряд может иметь различные формы:

1) большинство временных рядов имеет тенденцию, характеризующую совокупное долговременное воздействие множества факторов на динамику изучаемого показателя. Данные факторы, взятые в отдельности могут оказывать разнонаправленные воздействия, однако в совокупности они формируют его возрастающую или убывающую тенденцию.

2) изучаемые показатели могут быть подвержены циклическим колебаниям, они могут носить сезонный характер.

3) Некоторые временные ряды не содержат тенденции и циклические компоненты, а каждый их следующий уровень образуется, как сумма среднего уровня ряда и некоторые случайные компоненты.

В реальных условиях временной ряд содержит чаще всего 3 компонента и каждый уровень ряда формируется под воздействием тенденции, сезонных колебаний, и случайной компоненты.

Уровни временного ряда можно представить как сумму или произведение всех его составляющих компонент (трендовой, сезонной и случайной). Модель, в которой все компоненты ряда представлены как сумма этих составляющих, называют ад­дитивной. Если факторы влияния представлены как произведе­ние составляющих, то модель называют мультипликативной.

Основной задачей эконометрики при исследовании временного рядя является количественное выражение каждой из вышеперечисленных компонент для дальнейшего использования полученной информации. (для прогнозирования будущих значений ряда или построения модели двух или более временных рядов).

Временной ряд

Временно́й ряд (или ряд динамики) - собранный в разные моменты времени статистический материал о значении каких-либо параметров (в простейшем случае одного) исследуемого процесса. Каждая единица статистического материала называется измерением или отсчётом, также допустимо называть его уровнем на указанный с ним момент времени. Во временном ряде каждому отчету должно быть указано время измерения или номер измерения по порядку. Временной ряд существенно отличается от простой выборки данных , так как при анализе учитывается взаимосвязь измерений со временем, а не только статистическое разнообразие и статистические характеристики выборки .

Анализ временных рядов

Ана́лиз временны́х рядо́в - совокупность математико -статистических методов анализа , предназначенных для выявления структуры временных рядов и для их прогнозирования . Сюда относятся, в частности, методы регрессионного анализа . Выявление структуры временного ряда необходимо для того, чтобы построить математическую модель того явления, которое является источником анализируемого временного ряда. Прогноз будущих значений временного ряда используется для эффективного принятия решений.

Пример временного ряда

Временные ряды состоят из двух элементов:

  • периода времени, за который или по состоянию на который приводятся числовые значения;
  • числовых значений того или иного показателя, называемых уровнями ряда.

Временные ряды классифицируются по следующим признакам:

Примеры временных рядов

Временные ряды, как правило, возникают в результате измерения некоторого показателя. Это могут быть как показатели (характеристики) технических систем, так и показатели природных, социальных, экономических и других систем (например, погодные данные). Типичным примером временного ряда можно назвать биржевой курс, при анализе которого пытаются определить основное направление развития (тенденцию или тренда).

Примечания

Литература

  • Мишулина О. А. Статистический анализ и обработка временных рядов. - М .: МИФИ , 2004. - С. 180. - ISBN 5-7262-0536-7

См. также


Wikimedia Foundation . 2010 .

  • Семейство рецепторов липопротеинов низкой плотности
  • Вудворд, Вивьен Джон

Смотреть что такое "Временной ряд" в других словарях:

    временной ряд - — временной ряд ряд динамики динамический ряд Ряд последовательных значений, характеризующих изменение показателя во времени. В.р. разделяются, во первых, на моментные ряды… … Справочник технического переводчика

    Временной ряд - (или ряд динамики, или динамический ряд) ряд последовательных значений, характеризующих изменение показателя во времени. В.р. разделяются, во первых, на моментные ряды (данные которых характеризуют величину явления по состоянию на… … Экономико-математический словарь

    временной ряд - – это последовательность наблюдений, упорядоченных во времени (или пространстве). Если какое нибудь явление наблюдают на протяжении некоторого времени, имеет смысл представить данные в том порядке, в котором они возникали, из за того, в… … Словарь социологической статистики

    ВРЕМЕННОЙ РЯД - англ. series, time; нем. Zeitreihe. Сопоставление количественных данных, к рые характеризуют состояние объекта в различные моменты времени. Antinazi. Энциклопедия социологии, 2009 … Энциклопедия социологии

    ВРЕМЕННОЙ РЯД - Упорядочение или организация данных во временном измерении, обычно с обозначенными постоянными временными категориями. Например, изменения некоторой модели поведения могут быть закодированы во временном измерении, когда наблюдения проводятся… … Толковый словарь по психологии

    временной ряд - laikinė seka statusas T sritis automatika atitikmenys: angl. temporal series; time sequence vok. Zeitfolge, f; Zeitsequenz, f rus. временная последовательность, f; временной ряд, m pranc. séquence de temporisation, f … Automatikos terminų žodynas

    ВРЕМЕННОЙ РЯД - первоначально в статистич. литературе ряд наблюдений в различные моменты времени (напр., экономические В. р., метеорологические В. р.). В советской экономич. литературе наряду с термином В. р. употребляется термин ряд динамики. С середины 20 х гг … Математическая энциклопедия

    Временной ряд - организация данных во временном измерении. Позволяет выявлять колебания активности функции. Например, циркадианные (суточные) и иные ритмы … Энциклопедический словарь по психологии и педагогике

    ВРЕМЕННОЙ РЯД - англ. series, time; нем. Zeitreihe. Сопоставление количественных данных, к рые характеризуют состояние объекта в различные моменты времени … Толковый словарь по социологии

    ВРЕМЕННОЙ РЯД - (times series) в идеале совокупность данных, в которой четко определенное количество записывается в последовательных равных промежутках времени точках на протяжении определенного периода (К. Марш, 1988), в частности, индекс розничных цен. Там,… … Большой толковый социологический словарь

Книги

  • Основы эконометрического моделирования. Учебное пособие , Л. О. Бабешко. В настоящее пособие включены классические регрессионные модели (линейные и нелинейные), обобщенные регрессионные модели, регрессионные модели с фиктивными переменными, регрессионные модели с…

1.7 Аддитивная и мультипликативная модели временного ряда

Существует несколько подходов к анализу структуры временных рядов, содержащих сезонные или циклические колебания.

Простейший подход- расчет значений сезонной компоненты методом скользящей средней и построение аддитивной или мультипликативной модели временного ряда. Общий вид аддитивной модели следующий:

Эта модель предполагает, что каждый уровень временного ряда может быть представлен как произведение трендовой, сезонной и случайной компонент. Общий вид мультипликативной модели выглядит так:

Эта модель предполагает, что каждый уровень временного ряда может быть представлен как произведение трендовой, сезонной и случайной компонент. Выбор одной из двух моделей осуществляется на основе анализа структуры сезонных колебаний. Если амплитуда колебаний приблизительно постоянна, строят аддитивную модель временного ряда, в которой значения сезонной компоненты предполагаются постоянными для различных циклов. Если амплитуда сезонных колебаний возрастает или уменьшается, строят мультипликативную модель временного ряда, которая ставит уровни ряда в зависимость от значений сезонной компоненты.

Построение аддитивной и мультипликативной моделей сводится к расчету значений трендовой, циклической и случайной компонент для каждого уровня ряда.

Процесс построения модели включает в себя следующие шаги.

1. Выравнивание исходного ряда методом скользящей средней.

2. Расчет значений сезонной компоненты.

3. Устранение сезонной компоненты из исходных уровней ряда и получение выровненных данных в аддитивной или мультипликативной модели.

4. Аналитическое выравнивание уровней и расчет значений тренда с использованием полученного уравнения тренда.

5. Расчет полученных по модели значений или

6. Расчет абсолютных и относительных ошибок.

Если полученные значения ошибок не содержат автокорреляции, ими можно заменить исходные уровни ряда и в дальнейшем использовать временной ряд ошибок для анализа взаимосвязи исходного ряда и других временных рядов.


После удаления тенденции (тренда) из временного ряда мы получим стационарный временной ряд. Его можно рассматривать как выборку Т последовательных наблюдений через равные промежутки времени из существенно более продолжительной (генеральной последовательности случайных величин. При этом статистические выводы делаются относительно вероятностной структуры генеральной последовательности. Такую последовательность удобно считать простирающейся неограниченно в будущее и, возможно, в прошлое. Последовательность случайных величин у 1 , у 2 , . . . или. . ., у -1 , у 0 , у 1 , . . . называется случайным процессом с дискретным параметром времени.

Несмотря на полную произвольность вероятностных моделей последовательностей случайных величин, полезно отличать случайные процессы от множества случайных величин этого процесса, учитывая понятие времени. Грубо говоря, в случайном процессе наблюдения, разделённые небольшими промежутками времени, близки по значениям в отличие от наблюдений, далеко отстоящих друг от друга во времени. Более того, модель значительно упрощается после расширения конечной последовательности наблюдений до бесконечной.

Одним из таких упрощений является свойство стационарности . Будем считать, что поведение множества случайных величин с вероятностной точки зрения не зависит от времени.

Случайный процесс y(t) с непрерывным параметром времени можно определить для 0 ≤ t < ∞ или -∞ < t < ∞ и рассматривать с привлечением вероятностной меры на пространстве функций y(t). Выборка из такого процесса состоит из наблюдений в конечном числе точек времени, или из непрерывных наблюдений в интервале времени.

Наблюдение процесса, часто называемое реализацией , есть точка в соответствующем бесконечномерном пространстве, где определена вероятностная мера. Вероятность определяется на некоторых множествах, называемых измеримыми. Этот класс множеств включает вместе с любым множеством его дополнение, а также объединение и пересечение счётного числа множеств этого класса; вероятностная мера на этом классе множеств определяется таким образом, что вероятность объединения непересекающихся множеств равна сумме вероятностей отдельных множеств.

Практически мы интересуемся вероятностями, которые связаны с конечным числом случайных величин. Эти вероятности включают в себя функцию совместного распределения.

1.9 Применение быстрого преобразования Фурье к стационарному временному ряду

Одно из назначений преобразования Фурье- выделять частоты циклических составляющих временного ряда, содержащего случайную компоненту.

Пусть число данных N представимо в виде N = N 1 N 2 . Тогда можно записать

t = t 1 + (t 2 -1)N 1 , t 1 = 1, . . ., N 1 , t 2 = 1, . . ., N 2 ;

j = j 1 + j 2 N 2 , j 1 = 0, . . ., N 2 – 1 , j 2 = 0, . . ., N 1 - 1;

Отметим, что a N – j = a j и b N – j = - b j . Искомые коэффициенты являются соответственно действительной и мнимой частями суммы:


Для их отыскания вычислим сначала величины

Для каждой пары (j 1 , t 1) , j 1 = 0, . . ., N 2 – 1 и t 1 = 0, . . ., N 1 . Поскольку

и ,

то существует около N 1 N 2 /2 = N/2 таких пар. После этого находятся действительная и мнимая части суммы (1.9.1):

для j = 0,1, . . ., . Число операций умножения приближённо равно N 2 N в первых суммах и 2N 1 N во вторых суммах, так что число операций умножения в целом составляет примерно N (N 2 + 2N 1). В то же время число произведений в определении коэффициентов a j и b j , j=0,1, . . ., примерно равно N 2 . ,


Для каждого момента (периода) времени t = 1: N значение компоненты e t для аддитивной модели определяется как

, - сумма циклической и трендовой компонент, а для мультипликативной модели: - произведение циклической и трендовой компонент.

Ошибки измерений нам неизвестны, а известны лишь эмпирические остатки.

Рассматривая последовательность остатков как временной ряд, можно построить график их зависимости от времени. В соответствии с предпосылками метода наименьших квадратов остатки e t должныбыть случайными. Однако при моделировании временных рядов часто встречаются ситуация, когда остатки содержат тенденцию или циклические колебания. Это свидетельствует о том, что каждое следующее значение остатков зависит от предшествующих. В этом случае говорят о наличии автокорреляции остатков.

Автокорреляция остатков может быть вызвана следующими причинами, имеющими различную природу. Во-первых , иногда она связана с исходными данными и вызвана наличием ошибок измерения в значениях результативного признака. Во-вторых , в ряде случаев причину автокорреляции остатков следует искать в формулировке модели. Модель может не включать фактор, существенное воздействие на результат, влияние которого отражается в остатках, вследствие чего последние могут оказаться автокоррелированными. Очень часто этим фактором является фактор времени t. Кроме того, в качестве таких существенных факторов могут выступать лаговые значения переменных, включённых в модель.

Либо модель не учитывает несколько второстепенных факторов, совместное влияние которых на результат существенно в виду совпадения тенденций их изменения или фаз циклических колебаний.

Существует два наиболее распространённых метода определения автокорреляции остатков. Первый метод – это построение графика зависимости остатков от времени и визуальное определение наличия или отсутствия автокорреляции. Второй метод – использование критерия Дарбина – Уотсона.

Дж. Дарбин и Г. Уотсон построили таблицы, дающие нижние и верхние пределы порогов значимости. Эти таблицы достаточны для большинства конкретных ситуаций. Рассмотрим логические основания критерия.

Выражение

(1.10.1)

представляет собой «отношение фон Неймана», применённое к остаткам оценки. Этот критерий имеет эффективность аналогичную таковой для критерия r 1 , первого коэффициента автокорреляции остатков. Из предыдущей главы известно, что этот критерий будет особенно мощным, если ошибки следуют авторегрессинному процессу первого порядка. Таким образом, он, по-видимому, хорошо приспособлен для экономических моделей.

Новое на сайте

>

Самое популярное