Домой Россельхозбанк Уровни временного ряда и их характеристика. Временные ряды в эконометрических исследованиях

Уровни временного ряда и их характеристика. Временные ряды в эконометрических исследованиях

Временной ряд - это набор чисел, привязанный к последовательным, обычно равноотстоящим моментам времени. Числа, составляющие временной ряд и получающиеся в результате наблюдения за ходом некоторого процесса, называются уровнями временного ряда или элементами. Под длиной временного ряда понимают количество входящих в него уровней n . Временной ряд обычно обозначают Y(t), или, где t= 1,2,…,n.

В общем случае каждый уровень временного можно представить как функцию четырех компонент: f (t ), S (t ), U (t ), (t ) , отражающих закономерность и случайность развития.

Где f (t ) - тренд (долговременная тенденция) развития; S (t ) - сезонная компонента; U (t ) -циклическая компонента; (t )- остаточная компонента.

В модели временного ряда принято выделять две основные составляющие: детерминированную (систематическую) и случайную. Под детерминированной составляющей временного ряда понимают числовую последовательность, элементы которой вычисляются по определенному правилу как функция времени t . Исключив детерминированную составляющую из данных, мы получим колеблющийся вокруг нуля ряд, который может в одном предельном случае представлять случайные скачки, а в другом - плавное колебательное движение.

Детерминированная составляющая может содержать следующие структурные компоненты:

  • 1) тренд, или тенденция f (t ), представляет собой устойчивую закономерность, наблюдаемую в течение длительного периода времени. Обычно тренд (тенденция) описывается с помощью той или иной неслучайной функции f тр (t ) (аргументом которой является время), как правило, монотонной. Эту функцию называют функцией тренда, или просто - трендом.
  • 2) Сезонная компонента s(t) связана с наличием факторов, действующих с заранее известной периодичностью. Это регулярные колебания, которые носят периодический или близкий к нему характер и заканчиваются в течение года.
  • 3) Типичные примеры сезонного эффекта: изменение загруженности автотрассы по временам года, пик продаж товаров для школьников в конце августа - начале сентября. Спрос на пластические операции сезонный: в осенне-зимний период обращений больше. Типичным примером являются сильные колебания объема товарно-материальных запасов в сезонных отраслях Сезонная компонента со временем может меняться, либо иметь плавающий характер.
  • 4) Циклическая компонента u (t ) - неслучайная функция, описывающая длительные периоды (более одного года) относительного подъема и спада и состоящая из циклов переменной длительности и амплитуды. Примером циклической (конъюнктурной) компоненты являются волны Кондратьева, демографические «ямы» и т.п. Подобная компонента весьма характерна для рядов макроэкономических показателей. Здесь циклические изменения обусловлены взаимодействием спроса и предложения, а также наложением таких факторов, как истощение ресурсов, погодные условия, изменения в налоговой политике и т.п. Отметим, что циклическую компоненту крайне трудно идентифицировать формальными методами, исходя только из данных изучаемого ряда.
  • 5) Случайная компонента (t ) - это составная часть временного ряда, оставшаяся после выделения систематических компонент. Она отражает воздействие многочисленных факторов случайного характера и представляет собой случайную, нерегулярную компоненту. Она является обязательной составной частью любого временного ряда в экономике, так как случайные отклонения неизбежно сопутствуют любому экономическому явлению. Если систематические компоненты временного ряда определены правильно, то остающаяся после выделения из временного ряда этих компонент так называемая остаточная последовательность (ряд остатков) будет случайной компонентой ряда.

Задача анализа временных рядов состоит в том, чтобы с помощью детерминированной компоненты предсказывать прогнозное значение временного ряда, а с помощью случайной компоненты предсказывать величину возможного отклонения и вероятность такого отклонения.

Требования к исходной информации: Для того, чтобы анализ временного ряда обладал в нужной степени достоверностью в первую очередь необходимо обеспечить качество исходной информации:

  • 1. Данные должны быть сопоставимы;
  • 2. Данные должны быть однородными;
  • 3. Данные должны быть устойчивыми;
  • 4. Необходим достаточно большой объём данных

В анализе случайного компонента экономических временных рядов важную роль играет сравнение случайной величины с хорошо изученной формой случайных процессов - стационарными случайными процессами.

Стационарным процессом в узком смысле называется такой случайный процесс, вероятностные свойства которого с течением времени не изменяются. Он протекает в приблизительно однородных условиях и имеет вид непрерывных случайных колебаний вокруг некоторого среднего значения. Причем ни средняя амплитуда, ни его частота не обнаруживают с течением времени существенных изменений.

Однако на практике чаще встречаются процессы, вероятностные характеристики которых подчиняются определенным закономерностям и не являются постоянными величинами.

Поэтому в прикладном эконометрическом анализе используется понятие слабой стационарности (или стационарности в широком смысле), которое предполагает неизменность во времени среднего значения, дисперсии и ковариации временного ряда. Случайный процесс называется стационарным в широком смысле, если его математическое ожидание постоянно и автокорреляционная функция зависит только от длины временного интервала.

В зависимости от вида связи между этими компонентами может быть построена либо аддитивная модель:

Y (t) =f (t )+ S (t )+U (t )+(t );

либо мультипликативная модель:

Y (t) =f (t ) S (t ) U (t )+ (t )

временного ряда.

В процессе формирования значений временных рядов не всегда участвуют все четыре компоненты. Однако во всех случаях предполагается наличие случайной составляющей.

При построении эконометрической модели используются два типа данных:

    данные, характеризующие совокупность различных объектов в определенный момент времени;

    данные, характеризующие один объект за ряд последовательных моментов времени.

Модели, построенные по данным первого типа, называются пространственными моделями . Модели, построенные на основе второго типа данных, называются моделями временных рядов .

Временной ряд (ряд динамики) – это совокупность значений какого-либо показателя за несколько последовательных моментов или периодов времен и. Каждый уровень временного ряда формируется под воздействием большого числа факторов, которые условно можно подразделить на три группы:

    факторы, формирующие тенденцию ряда;

    факторы, формирующие циклические колебания ряда;

    случайные факторы.

Рассмотрим воздействие каждого фактора на временной ряд в отдельности.

Большинство временных рядов экономических показателей имеют тенденцию, характеризующую совокупное долговременное воздействие множества факторов на динамику изучаемого показателя. Все эти факторы, взятые в отдельности, могут оказывать разнонаправленное воздействие на исследуемый показатель. Однако в совокупности они формируют его возрастающую или убывающую тенденцию. На рис. 4.1 показан гипотетический временной ряд, содержащий возрастающую тенденцию.

Рис. 4.1.

Также изучаемый показатель может быть подвержен циклическим колебаниям. Эти колебания могут носить сезонный характер, поскольку экономическая деятельность ряда отраслей экономики зависит от времени года (например, цены на сельскохозяйственную продукцию в летний период выше, чем в зимний; уровень безработицы в курортных городах в зимний период выше по сравнению с летним). При наличии больших массивов данных за длительные промежутки времени можно выявить циклические колебания, связанные с общей динамикой конъюнктуры рынка. На рис. 4.2 представлен гипотетический временной ряд, содержащий только сезонную компоненту.

Рис. 4.2.

Некоторые временные ряды не содержат тенденции и циклической компоненты, а каждый следующий их уровень образуется как сумма среднего уровня ряда и некоторой (положительной или отрицательной) случайной компоненты. Пример ряда, содержащего только случайную компоненту, приведен на рис. 4.3.

Рис. 4.3.

Очевидно, что реальные данные не следуют целиком и полностью из каких-либо описанных выше моделей. Чаще всего они содержат все три компоненты. Каждый их уровень формируется под воздействием тенденции, сезонных колебаний и случайной компоненты.

В большинстве случаев фактический уровень временного ряда можно представить как сумму или произведение трендовой, циклической и случайной компонент. Модель, в которой временной ряд представлен как сумма перечисленных компонент, называется аддитивной моделью временного ряда. Модель, в которой временной ряд представлен как произведение перечисленных компонент, называется мультипликативной моделью временного ряда. Основная задача эконометрического исследования отдельного временного ряда – выявление и придание количественного выражения каждой из перечисленных выше компонент с тем, чтобы использовать полученную информацию для прогнозирования будущих значений ряда или при построении моделей взаимосвязи двух или более временных рядов.

Ответы на экзаменационные билеты по эконометрике Яковлева Ангелина Витальевна

70. Компоненты временного ряда

Временным рядом называется ряд наблюдаемых значений изучаемого показателя, расположенных в хронологическом порядке или в порядке возрастания времени.

Отдельно взятый временной ряд можно представить как выборочную совокупность из бесконечного ряда значений показателей во времени.

Уровнями временного ряда называются наблюдения

из которых состоит данный ряд.

Временной ряд называется моментным рядом , если уровень временного ряда фиксирует значение изучаемого показателя на определённый момент времени.

Временной ряд называется интервальным рядом , если уровень временного ряда характеризует значение показателя за определённый период времени.

Временной ряд называется производным рядом , если уровни ряда представлены в виде производных величин (средних или относительных показателей).

Исследование данных, представленных в виде временных рядов, преследует две основные цели:

1) характеристика структуры временного ряда;

2) прогнозирование будущих уровней временного ряда на основании прошлых и настоящих уровней.

Достижение поставленных целей возможно с помощью идентификации модели временного ряда.

Идентификацией модели временного ряда называется процесс выявления основных компонент, которые содержит изучаемый временной ряд.

Временные ряды могут содержать два вида компонент – систематическую и случайную составляющие.

Систематическая составляющая временного ряда является результатом воздействия постоянно действующих факторов.

Выделяют три основных систематических компоненты временного ряда:

2) сезонность;

3) цикличность.

Трендом называется систематическая линейная или нелинейная компонента, изменяющаяся во времени.

Сезонностью называются периодические колебания уровней временного ряда внутри года.

Цикличностью называются периодические колебания, выходящие за рамки одного года. Промежуток времени между двумя соседними вершинами или впадинами в масштабах года определяют как длину цикла.

Систематические составляющие характеризуются тем, что они могут одновременно присутствовать во временном ряду.

Случайной составляющей называется случайный шум или ошибка, которая воздействует на временной ряд нерегулярно.

К основным причинам, по которым возникает случайный шум, относят факторы резкого и внезапного действия, а также действия текущих факторов.

Катастрофическими колебаниями называется случайный шум, в основе возникновения которого лежат факторы резкого и внезапного действия.

Шум, в основе возникновения которого лежит действие текущих факторов, может быть связан также с ошибками наблюдений.

Отдельный уровень временного ряда обозначается как yt. Его можно представить в виде функции от основных компонент временного ряда следующим образом:

yt=f(T,S,C,?),

где T – это трендовая компонента,

S – это сезонная компонента,

C – это циклическая компонента,

? – случайный шум.

Существует несколько основных моделей временных рядов, к которым относятся:

1) аддитивная модель временного ряда, в которой компоненты представляют собой слагаемые:

yt=Tt+St+Ct+?t;

2) мультипликативная модель временного ряда, в которой компоненты представляют собой сомножители:

yt=Tt*St*Ct*?t;

3) комбинированная модель временного ряда:

yt=Tt*St*Ct+?t.

Из книги Самоучитель езды на автомобиле автора Геннингсон Михаил Александрович

3. Движение с перестроением из ряда в ряд Данный маневр требует от водителя повышенного внимания. При этом должны быть выполнены два условия. Надо:* Уступить дорогу транспортному средству, движущемуся в своем ряду. * Подать предупредительный сигнал. Рассмотрим несколько

Из книги Энциклопедия пикапа. Версия 12.0 автора Олейник Андрей

Основные модификации модельного ряда Ну как, сходили? Понравилось? Только честно, понравилось или нет? Ладно, верю, верю. Хотя смотрите, может еще не поздно все остановить? В конце концов, вокруг так много симпатичных парней... Да шучу я, шучу, немного их, на самом-то деле. Ну,

Из книги Большая Советская Энциклопедия (ВЕ) автора БСЭ

Из книги Большая Советская Энциклопедия (ЖИ) автора БСЭ

Из книги Жизнеобеспечение экипажей летательных аппаратов после вынужденного приземления или приводнения (без иллюстраций) автора Волович Виталий Георгиевич

Из книги Жизнеобеспечение экипажей летательных аппаратов после вынужденного приземления или приводнения [с иллюстрациями] автора Волович Виталий Георгиевич

Строительство временного жилища Сооружение временного жилища, защита от высоких и низких температур, солнечной радиации, ветра и т. д. – первоочередная задача, которую необходимо решать немедленно, как только минует непосредственная угроза для жизни людей после

Из книги Ответы на экзаменационные билеты по эконометрике автора Яковлева Ангелина Витальевна

76. Сезонные и циклические компоненты временного ряда Для построения адекватной модели временного ряда необходимо охарактеризовать сезонные и циклические компоненты временного ряда. К основным методам моделирования сезонных и циклических колебаний относятся:1) метод

Из книги Наградная медаль. В 2-х томах. Том 2 (1917-1988) автора Кузнецов Александр

79. Методы фильтрации временного ряда Методы фильтрации временных рядов предназначены на решение проблем, возникающих при исследовании взаимосвязи между двумя и более временными рядами, с помощью исключения из них трендовой и сезонной компонент.К проблемам, которые

Из книги Энциклопедия юриста автора

80. Автокорреляция уровней временного ряда. Анализ структуры временного ряда на основании коэффициентов автокорреляции Временной ряд является нестационарным, если он содержит такие систематические составляющие как тренд и цикличность.Нестационарные временные ряды

Из книги Как разобраться в ЖКХ и не переплачивать автора Шефель Ольга Михайловна

82. Линейные модели стационарного временного ряда Стохастический временной ряд называется стационарным, если его математическое ожидание, дисперсия, автоковариация и автокорреляция являются неизменными во времени.К основным линейным моделям стационарных временных

Из книги Закон подлости и другие законы автора Душенко Константин Васильевич

Из книги Что делать в экстремальных ситуациях автора Ситников Виталий Павлович

Изоляторы временного содержания ИЗОЛЯТОРЫ ВРЕМЕННОГО СОДЕРЖАНИЯ - места, предназначенные для содержания под стражей задержанных по подозрению в совершении преступлений. В И.в.с. в случаях, предусмотренных законодательством, могут временно содержаться подозреваемые и

Из книги автора

Склады временного хранения см. Временное хранение.

Из книги автора

Из книги автора

Метазаконы, или законы высшего ряда ВСЯКОЕ ОБОБЩЕНИЕ ЛОЖНО, ВКЛЮЧАЯ И ЭТО.«Первая аксиома формальной логики»АБСОЛЮТНОЙ ИСТИНЫ НЕ СУЩЕСТВУЕТ – ТАКОВА АБСОЛЮТНАЯ ИСТИНА.Дэвид ДжерролдМОЖНО БЫТЬ УВЕРЕННЫМ ЛИШЬ В ТОМ, ЧТО НИ В ЧЕМ НЕЛЬЗЯ БЫТЬ УВЕРЕННЫМ.Плиний

Из книги автора

Пребывание в изоляторе временного содержания (ИВС) Переступив порог камеры, помните: вы теперь один, и рассчитывать теперь вам придется только на себя, поэтому мобилизуйтесь. Не удивляйтесь и не паникуйте, что в течение нескольких ближайших дней вас не вызывают

В практике исследования динамики явлений принято считать, что значения уровней () временных рядов могут содержать следующие компоненты: тренд (), сезонную компоненту (), циклическую компоненту () и случайную составляющую ().

Под трендом понимают изменение, определяющее общее направление развития, основную тенденцию временного ряда. Это систематическая составляющая долговременного действия.

Наряду с долговременными тенденциями во временных рядах часто имеют место более или менее регулярные колебания – периодические составляющие рядов динамики. Если период колебания не превышает года, то их называют сезонными (расходы электроэнергии по кварталам). При большом периоде колебания считают, что во временных рядах имеет место циклическая составляющая. Примерами могут служить циклы деловой активности, демографические, инвестиционные.

Если из временного ряда удалить тренд и периодические составляющие, то останется нерегулярная компонента (). Экономисты разделяют факторы, под воздействием которых формируется нерегулярная компонента, на два вида: факторы резкого, внезапного действия (стихийные бедствия, войны) и текущие факторы (ощущается несколько факторов и их суммарное действие).

В этом случае уровни ряда . Они являются функцией случайной компоненты: колеблются вокруг среднего уровня, что характерно для так называемого стационарного ряда. На рисунке 10.1 такой ряд представляет собой ломаную линию, параллельную оси времени.

Где – уровни динамического ряда, – средний за период уровень ряда, – случайная составляющая, определяемая как .

Большинство динамических рядов в экономике характеризуется тенденцией и случайными колебаниями.

Модель уровня такого ряда имеет вид: ,

Где – тренд, – случайные колебания (рис. 10.2).

Представление временного ряда может быть следующих видов:

(аддитивная модель);

(мультипликативная модель);

(смешанного типа).

Решение любой задачи по анализу и прогнозированию временных рядов начинается с построения графика исследуемого показателя, т.к., на этом этапе можно исследовать компонентный состав временных рядов, а также сделать первые шаги к выбору модели для описания их динамики. Отличительной особенностью аддитивной модели является то, что амплитуда сезонных колебаний, отражающая отклонения от тренда или среднего, остается примерно постоянной, неизменной во времени.

Иногда это сложно описать, т.к. во временном ряду ошибок остаются статистические зависимости, которые можно моделировать. Как правило, ряд ошибок – это стационарный ряд.

Ряд называется стационарным, если совместное распределение m-наблюдений: такое же, как и для при любых m, . В этом случае имеем:

,

При анализе изменения величины в зависимости от значения временного сдвига принято говорить об автоковариационной функции (АКФ).

На практике АКФ статистически оцениваются по имеющимся уровням временного ряда. Выборочная оценка коэффициента автокорреляции определяется формулой:


, (10.1)

где , .

Числитель формулы (10.1) представляет выборочную оценкукоэффициента автоковариации. График АКФ, отражающий изменение , в зависимости от значений сдвига , называют коррелограммой. Вид АКФ оказывает существенную помощь в выборе моделей, описывающих поведение анализируемых временных рядов.

Проверка гипотезы существования тенденции.

Важной задачей возникающей при анализе рядов динамики, является определение основной тенденции в развитии исследуемого явления. Прогнозирование временных рядов целесообразно начинать с по­строения графика исследуемого показателя. Однако в нем не всегда прослеживается присутствие тренда. Поэтому в этих случаях необхо­димо выяснить, существует ли тенденция во временном ряду или она отсутствует.

Для временного ряда рассмотрим критерий «восходящих и нисходящих» серий, согласно которому наличие тенденции определяется по следующему алгоритму:

1. Для исследуемого временного ряда определяется последователь­ность знаков, исходя из условий

(10.2)

При этом, если последующее наблюдение равно предыдущему, то учи­тывается только одно наблюдение.

Подсчитывается число серий u (n ). Под серией понимается последовательность подряд расположенных плюсов или минусов, причем один плюс или один минус считается серией.

Определяется протяженность самой длинной серии l max (n ).

4. По таблице, приведенной ниже, находится значение l (n ).

Таблица 10.5

5. Если нарушается хотя бы одно из следующих неравенств, то гипотеза об отсутствии тренда отвергается с доверительной вероятностью 0,95:

(10.3)

Квадратные скобки неравенства в (10.3) означают целую часть числа.


Реальные данные часто содержат все три компоненты. В большинстве случаев временной ряд можно представить как сумму или произведение трендовой , циклической и случайной компонент. В случае суммы имеет место аддитивная модель временного ряда:

(1)

в случае произведения – мультипликативная модель:

. (2)

Основная задача эконометрического исследования отдельного временного ряда – выявление количественного выражения каждой из компонент и использование полученной информации для прогноза будущих значений ряда или построение модели взаимосвязи двух или более временных рядов.

Сначала рассмотрим основные подходы к анализу отдельного временного ряда. Такой ряд может содержать, помимо случайной составляющей, либо только тенденцию, либо только сезонную (циклическую) компоненту, либо все компоненты вместе. Для того, чтобы выявить наличие той или иной неслучайной компоненты, исследуется корреляционная зависимость между последовательными уровнями временного ряда, или автокорреляция уровней ряда. Основная идея такого анализа заключается в том, что при наличии во временном ряде тенденции и циклических колебаний значения каждого последующего уровня ряда зависят от предыдущих.

Количественно автокорреляцию можно измерить с помощью линейного коэффициента корреляции между уровнями исходного временного ряда и уровнями этого ряда, сдвинутыми на несколько шагов во времени.

Коэффициент автокорреляции уровней ряда первого порядка измеряет зависимость между соседними уровнями ряда и т.е. при лаге 1.

Он вычисляется по следующей формуле:

(3)

где в качестве средних величин берутся значения:

(4)

В первом случае усредняются значения ряда, начиная со второго до последнего, во втором случае - значения ряда с первого до предпоследнего.

Формулу (3) можно представить как формулу выборочного коэффициента корреляции:

(5)

где в качестве переменной берется ряд а в качестве переменной ряд

Если значение коэффициента (3) близко к единице, это указывает на очень тесную зависимость между соседними уровнями временного ряда и о наличии во временном ряде сильной линейной тенденции.

Аналогично определяются коэффициенты автокорреляции более высоких порядков. Так, коэффициент автокорреляции второго порядка характеризует тесноту связи между уровнями и и определяется по формуле:

(6)

где в качестве одной средней величины берут среднюю уровней ряда с третьего до последнего, а в качестве другой - среднюю с первого уровня до

(7)

Число периодов, по которым рассчитывается коэффициент автокорреляции, называют лагом. С увеличением лага число пар значений, по которым рассчитывается коэффициент автокорреляции, уменьшается. Для обеспечения статистической достоверности максимальный лаг, как считают некоторые известные эконометристы, не должен превышать четверти общего объема выборки.

Коэффициент автокорреляции строится по аналогии с линейным коэффициентом корреляции, и поэтому он характеризует тесноту только линейной связи текущего и предыдущего уровней ряда. По нему можно судить о наличии линейной или близкой к линейной тенденции. Однако для некоторых временных рядов с сильной нелинейной тенденцией (например, параболической или экспоненциальной), коэффициент автокорреляции уровней ряда может приближаться к нулю.

Кроме того, по знаку коэффициента автокорреляции нельзя делать вывод о возрастающей или убывающей тенденции в уровнях ряда. Большинство временных рядов экономических данных имеют положительную автокорреляцию уровней, однако при этом не исключается убывающая тенденция.

Последовательность коэффициентов автокорреляции уровней различных порядков, начиная с первого, называется автокорреляционной функцией временного ряда. График зависимости ее значений от величины лага называется коррелограммой. Анализ автокорреляционной функции и коррелограммы помогает выявить структуру ряда. Здесь уместно привести следующие качественные рассуждения.

Если наиболее высоким является коэффициент автокорреляции первого порядка, очевидно, исследуемый ряд содержит только тенденцию. Если наиболее высоким оказался коэффициент автокорреляции порядка τ , ряд содержит циклические колебания с периодичностью в τ моментов времени. Если ни один из коэффициентов автокорреляции не является значимым, то либо ряд не содержит тенденции и циклических колебаний и имеет только случайную составляющую, либо ряд содержит сильную нелинейную тенденцию, для исследования которой нужно провести дополнительный анализ.

Пример . Пусть имеются данные об объёмах потребления электроэнергии жителями района за 16 кварталов, млн. квт.-ч:

t
y t 6,0 4,4 5,0 9,0 7,2 4,8 6,0 10,0 8,0 5,6 6,4 11,0 9,0 6,6 7,0 10,8

Нанесем эти значения на график:

Определим автокорреляционную функцию данного временного ряда. Рассчитаем коэффициент автокорреляции первого порядка. Для этого определим средние значения:

С учетом этих значений можно построить вспомогательную таблицу:

t y t
6,0 -1,0667 1,137778
4,4 -2,9867 -2,6667 3,185778 8,920178 7,111111
5,0 -2,3867 -2,0667 6,364444 5,696178 4,271111
9,0 1,6133 1,9333 -3,33422 2,602844 3,737778
7,2 -0,1867 0,1333 -0,36089 0,034844 0,017778
4,8 -2,5867 -2,2667 -0,34489 6,690844 5,137778
6,0 -1,3867 -1,0667 3,143111 1,922844 1,137778
10,0 2,6133 2,9333 -2,78756 6,829511 8,604444
8,0 0,6133 0,9333 1,799111 0,376178 0,871111
5,6 -1,7867 -1,4667 -1,66756 3,192178 2,151111
6,4 -0,9867 -0,6667 1,447111 0,973511 0,444444
11,0 3,6133 3,9333 -2,40889 13,05618 15,47111
9,0 1,6133 1,9333 6,345778 2,602844 3,737778
6,6 -0,7867 -0,4667 -1,52089 0,618844 0,217778
7,0 -0,3867 -0,0667 0,180444 0,149511 0,004444
10,8 3,4133 -0,22756 11,65084
Итог 9,813333 65,3173 54,0533

С помощью итоговых сумм подсчитаем величину коэффициента автокорреляции первого порядка:

.

Это значение свидетельствует о слабой зависимости текущих уровней ряда от непосредственно им предшествующих. Однако из графика очевидно наличие возрастающей тенденции уровней ряда, на которую накладываются циклические колебания.

Продолжая аналогичные расчеты для второго, третьего и т.д. порядков, получим автокорреляционную функцию, значения которой сведем в таблицу и построим по ней коррелограмму:

Лаг
0,16515 0,56687 0,11355 0,98302 0,11871 0,72204 0,00336 0,97384


Из коррелограммы видно, что наиболее высокий коэффициент корреляции наблюдается при значении лага, равном четырем, следовательно, ряд имеет циклические колебания периодичностью в четыре квартала. Это подтверждается и графическим анализом структуры ряда.

В случае, если при анализе структуры временного ряда обнаружена только тенденция и отсутствуют циклические колебания (случайная составляющая присутствует всегда), следует приступать к моделированию тенденции. Если же во временном ряде имеют место и циклические колебания, прежде всего следует исключить именно циклическую составляющую, и лишь затем приступать к моделированию тенденции. Выявление тенденции состоит в построении аналитической функции, характеризующей зависимость уровней ряда от времени, или тренда . Этот способ называют аналитическим выравниванием временного ряда .

Зависимость от времени может принимать разные формы, поэтому для её формализации используют различные виды функций:

Линейный тренд: ;

Гипербола: ;

Экспоненциальный тренд: (или );

Степенной тренд: ;

Параболический тренд второго и более высоких порядков:

Параметры каждого из трендов можно определить обычным МНК, используя в качестве независимой переменной время , а в качестве зависимой переменной – фактические уровни временного ряда y t (или уровни за вычетом циклической составляющей, если таковая была обнаружена). Для нелинейных трендов предварительно проводят стандартную процедуру их линеаризации.

Существует несколько способов определения типа тенденции. Чаще всего используют качественный анализ изучаемого процесса, построение и визуальный анализ графика зависимости уровней ряда от времени, расчет некоторых основных показателей динамики. В этих же целях можно использовать и коэффициенты автокорреляции уровней ряда. Тип тенденции можно определить путем сравнения коэффициентов автокорреляции первого порядка, рассчитанных по исходным и преобразованным уровням ряда. Если временной ряд имеет линейную тенденцию, то его соседние уровни y t и y t -1 тесно коррелируют. В этом случае коэффициент автокорреляции первого порядка уровней исходного ряда должен быть высоким. Если временной ряд содержит нелинейную тенденцию, например, в форме экспоненты, то коэффициент автокорреляции первого порядка по логарифмам уровней исходного ряда будет выше, чем соответствующий коэффициент, рассчитанный по уровням ряда. Чем сильнее выражена нелинейная тенденция в изучаемом временном ряде, тем в большей степени будут различаться значения указанных коэффициентов.

Выбор наилучшего уравнения в случае, если ряд содержит нелинейную тенденцию, можно осуществить путем перебора основных форм тренда, расчета по каждому уравнению скорректированного коэффициента детерминации и выбора уравнения тренда с максимальным значением этого коэффициента. Реализация этого метода относительно проста при компьютерной обработке данных.

При анализе временных рядов, содержащих сезонные или циклические колебания, наиболее простым подходом является расчет значений сезонной компоненты методом скользящей средней и построение аддитивной или мультипликативной модели временнóго ряда в форме (1) или (2).

Если амплитуда колебаний приблизительно постоянна, строят аддитивную модель (1), в которой значения сезонной компоненты предполагаются постоянными для различных циклов. Если амплитуда сезонных колебаний возрастает или уменьшается, строят мультипликативную модель (2), которая ставит уровни ряда в зависимость от значений сезонной компоненты.

Построение модели (1) или (2) сводится к расчету значений Т , S или Е для каждого уровня ряда. Процесс построения модели включает в себя следующие шаги:

1. Выравнивание исходного ряда методом скользящей средней.

2. Расчет значений сезонной компоненты S .

3. Устранение сезонной компоненты из исходных уровней ряда и получение выровненных данных (Т+Е ) в аддитивной или (Т·Е ) в мультипликативной модели.

4. Аналитическое выравнивание уровней (Т+Е ) или (Т·Е ) и расчет значений Т с использованием полученного уравнения тренда.

5. Расчет полученных по модели значений (Т+S ) или (Т·S )

6. Расчет абсолютных и относительных ошибок.

Пример . Построение аддитивной модели временного ряда . Рассмотрим данные об объёме потребления электроэнергии жителями района из ранее приведенного примера. Из анализа автокорреляционной функции было показано, что данный временнóй ряд содержит сезонные колебания периодичностью в 4 квартала. Объёмы потребления электроэнергии в осенне – зимний период (I и IV кварталы) выше, чем весной и летом (II и III кварталы). По графику этого ряда можно установить наличие приблизительно равной амплитуды колебаний. Это говорит о возможном наличии аддитивной модели. Рассчитаем её компоненты.

Шаг 1 . Проведем выравнивание исходных уровней ряда методом скользящей средней.

Поскольку циклические колебания имеют периодичность в 4 квартала, просуммируем уровни ряда последовательно за каждые 4 квартала со сдвигом на один момент времени и определим условные годовые объёмы потребления электроэнергии (колонка 3 в таблице 1).

Разделив полученные суммы на 4, найдем скользящие средние (колонка 4 таблицы 1). Полученные таким образом выровненные значения уже не содержат сезонной компоненты.

Поскольку скользящие средние получены осреднением четырех соседних уровней ряда, т.е. четного числа значений, они соответствуют серединам подынтервалов, состоящих из четверок чисел, т.е. должны располагаться между третьим и четвертым значениями четверок исходного ряда. Для того, чтобы скользящие средние располагались на одних временных отметках с исходным рядом, пары соседних скользящих средних ещё раз усредняются и получаются центрированные скользящие средние (колонка 5 таблицы 1). При этом теряются первые две и последние две отметки временного ряда, что связано с осреднением по четырем точкам.

Таблица 1

№ квартала Потребление электроэнергии y t Итого за четыре квартала Оценка сезонной компоненты
6,0
4,4
5,0 24,4 6,10 6,25 -1,250
9,0 25,6 6,40 6,45 2,550
7,2 26,0 6,50 6,625 0,575
4,8 27,0 6,75 6,875 -2,075
6,0 28,0 7,00 7,1 -1,100
10,0 28,8 7,20 7,3 2,700
8,0 29,6 7,40 7,45 0,550
5,6 30,0 7,50 7,625 -2,025
6,4 31,0 7,75 7,875 -1,475
11,0 32,0 8,00 8,125 2,875
9,0 33,0 8,25 8,325 0,675
6,6 33,6 8,40 8,375 -1,775
7,0 33,4 8,35
10,8

Шаг 2 . Найдем оценки сезонной компоненты как разность между фактическими уровнями ряда (колонка 2 таблицы 1) и центрированными скользящими средними (колонка 5). Эти значения помещаем в колонку 6 таблицы 1 и используем для расчета значений сезонной компоненты (таблица 2), которые представляют собой средние за каждый квартал (по всем годам) оценки сезонной компоненты S i . В моделях с сезонной компонентой обычно предполагается, что сезонные воздействия за период (в данном случае – за год) взаимопогашаются. В аддитивной модели это выражается в том, что сумма значений сезонной компоненты по всем точкам (здесь – по четырем кварталам) должна быть равна нулю.

Таблица 2

Для данной модели сумма средних оценок сезонной компоненты равна:

0,6-1,958-1,275+2,708=0,075.

Эта сумма оказалась не равной нулю, поэтому каждую оценку уменьшим на величину поправки, равной одной четверти полученного значения:

Δ=0,075/4=0,01875.

Рассчитаем скорректированные значения сезонной компоненты (они записаны в последней строке таблицы 2):

(8)

Эти значения при суммировании уже равны нулю:

0,581-1,977-1,294+2,69=0.

Шаг 3 . Исключаем влияние сезонной компоненты, вычитая её значения из каждого уровня исходного временного ряда. Получаем величины:

T+E=Y-S (9)

Эти значения рассчитываются в каждый момент времени и содержат только тенденцию и случайную компоненту (колонка 4 следующей таблицы):

Таблица 3

t T T+S E 2
6,0 0,581 5,419 5,902 6,483 -0,483 0,2332
4,4 -1,977 6,377 6,088 4,111 0,289 0,0833
5,0 -1,294 6,294 6,275 4,981 0,019 0,0004
9,0 2,69 6,310 6,461 9,151 -0,151 0,0228
7,2 0,581 6,619 6,648 7,229 -0,029 0,0008
4,8 -1,977 6,777 6,834 4,857 -0,057 0,0032
6,0 -1,294 7,294 7,020 5,726 0,274 0,0749
10,0 2,69 7,310 7,207 9,897 0,103 0,0107
8,0 0,581 7,419 7,393 7,974 0,026 0,0007
5,6 -1,977 7,577 7,580 5,603 -0,003 0,0000
6,4 -1,294 7,694 7,766 6,472 -0,072 0,0052
11,0 2,69 8,310 7,952 10,642 0,358 0,1278
9,0 0,581 8,419 8,139 8,720 0,280 0,0785
6,6 -1,977 8,577 8,325 6,348 0,252 0,0634
7,0 -1,294 8,294 8,512 7,218 -0,218 0,0474
10,8 2,69 8,110 8,698 11,388 -0,588 0,3458

Шаг 4 . Определим трендовую компоненту данной модели. Для этого проведем выравнивание ряда (Т+Е ) с помощью линейного тренда:

, найдем уровни Т для каждого момента времени (колонка 5 таблицы 3).

Шаг 5 . Найдем значения уровней ряда, полученные по аддитивной модели. Для этого прибавим к уровням Т значения сезонной компоненты для соответствующих кварталов, т.е. к значениям в колонке 5 таблицы 3 прибавим значения в колонке 3. Результаты операции представлены в колонке 6 таблицы 3.

Шаг 6 . В соответствии с методикой построения аддитивной модели расчет ошибки производим по формуле:

(10)

Это абсолютная ошибка. Численные значения абсолютных ошибок приведены в колонке 7 таблицы 3.

По аналогии с моделью регрессии для оценки качества построения модели или для выбора наилучшей модели можно применять сумму квадратов полученных абсолютных ошибок. Для данной аддитивной модели сумма квадратов абсолютных ошибок равна 1,10. По отношению к общей сумме квадратов отклонений уровней ряда от его среднего уровня, равной 71,59, эта величина составляет чуть более 1,5%. Следовательно, можно сказать, что аддитивная модель объясняет 98,5% общей вариации уровней временного ряда потребления электроэнергии за последние 16 кварталов.

Пример . Построение мультипликативной модели временного ряда . Пусть имеются поквартальные данные о прибыли компании за последние четыре года:

Таблица 4

График временного ряда свидетельствует о наличии сезонных колебаний периодичностью 4 квартала и общей убывающей тенденции уровней ряда:



Прибыль компании в весенне-летний период выше, чем в осенне-зимний период. Поскольку амплитуда сезонных колебаний уменьшается, можно предположить существование мультипликативной модели. Определим её компоненты.

Шаг 1 . Проведем выравнивание исходных уровней ряда методом скользящей средней. Методика, применяемая на этом шаге, полностью совпадает с методикой аддитивной модели. Результаты расчетов оценок сезонной компоненты представлены в таблице:

Таблица 5

№ квартала Прибыль компании Итого за четыре квартала Скользящая средняя за четыре квартала Центрированная скользящая средняя Оценка сезонной компоненты
81,500 81,250 1,108
81,000 80,000 0,800
79,000 77,750 0,900
76,500 75,750 1,215
75,000 74,000 1,081
73,000 71,500 0,811
70,000 68,500 0,905
67,000 65,750 1,217
64,500 63,250 1,075
62,000 59,500 0,807
57,000 54,750 0,950
52,500 50,250 1,194
48,000

Шаг 2 . Найдем оценки сезонной компоненты как частное от деления фактических уровней ряда на центрированные скользящие средние (колонка 6 таблицы). Используем эти оценки для расчета значений сезонной компоненты S . Для этого найдем средние за каждый квартал оценки сезонной компоненты S i . Взаимопогашаемость сезонных воздействий в мультипликативной модели выражается в том, что сумма значений сезонной компоненты по всем кварталам должна равняться числу периодов в цикле. В нашем случае число периодов одного цикла (год) равно четырем кварталам. Результаты расчетов сведем в таблицу:

Таблица 6

Здесь сумма средних оценок сезонных компонент по всем четырем кварталам

не равна четырем. Чтобы эта сумма равнялась четырем, умножим каждое слагаемое на поправочный коэффициент

0,803 79,70 79,48 63,82 1,003 0,179 0,03 0,913 76,67 76,70 70,03 1,000 -0,030 0,00 1,202 76,54 73,93 88,86 1,035 3,139 9,85 1,082 73,94 71,15 76,99 1,039 3,013 9,08 0,803 72,23 68,38 54,91 1,056 3,093 9,57 0,913 67,91 65,60 59,90 1,035 2,105 4,43 1,202 66,56 62,83 75,52 1,059 4,482 20,08 1,082 62,85 60,05 64,98 1,047 3,024 9,14 0,803 59,78 57,28 45,99 1,044 2,007 4,03 0,913 56,96 54,50 49,76 1,045 2,240 5,02 1,202 49,92 51,73 62,18 0,965 -2,176 4,73 1,082 46,21 48,95 52,97 0,944 -2,966 8,79 0,803 37,36 46,18 37,08 0,809 -7,080 50,12

Шаг 3 . Разделим каждый уровень исходного ряда на соответствующие значения сезонной компоненты. Тем самым мы получим величины

, (12)

Шаг 4 . Определим трендовую компоненту в мультипликативной модели. Для этого рассчитаем параметры линейного тренда, используя уровни (Т+Е ). Уравнение тренда имеет вид:

Подставляя в это уравнение значения , найдем уровни Т для каждого момента времени (колонка 5 таблицы).

Шаг 5 . Найдем уровни ряда по мультипликативной модели, умножив уровни Т на значения сезонной компоненты для соответствующих кварталов (колонка 6 таблицы).

Шаг 6 . Расчет ошибок в мультипликативной модели произведем по формуле:

. (13)

Численные значения ошибок приведены в колонке 7 таблицы. Для того, чтобы сравнить мультипликативную модель и другие модели временного ряда, можно по аналогии с аддитивной моделью использовать сумму квадратов абсолютных ошибок. Абсолютные ошибки в мультипликативной модели определяются как:

. (14)

В данной модели сумма квадратов абсолютных ошибок составляет 207,4. Общая сумма квадратов отклонений фактических уровней этого ряда от среднего значения равна 5023. Таким образом, доля объясненной дисперсии уровней ряда составляет 95,9%.

Прогнозирование по аддитивной или мультипликативной модели временного ряда сводится к расчету будущего значения временного ряда по уравнению модели без случайной составляющей в виде

для аддитивной или

для мультипликативной модели.

Новое на сайте

>

Самое популярное