Домой Виды займов Сложные проценты в MS EXCEL. Постоянная ставка

Сложные проценты в MS EXCEL. Постоянная ставка

Стоит задача выбора наилучшего банка и наиболее выгодного типа счета. И если с банками более-менее все понятно - можно сориентироваться по многочисленным рейтингам и выбрать то отделение, которое недалеко расположено от места проживания, то с выбором типа счета дело обстоит куда сложней. Ведь помимо величины процента нужно учитывать еще возможность пополнения депозита, досрочного снятия, способ начисления процентов и прочие факторы. Помимо размера самого процента большое значение имеет его вид. Рассмотрим подробно, чем отличаются между собой простой и сложный процент.

Простой процент. Формула расчета

С все предельно ясно, ведь его изучают еще в школе. Единственное, что нужно помнить, это то, что ставка всегда указывается за годовой период. Непосредственно сама формула имеет такой вид:

КС = НС + НС*i*п = НС*(1 + i*п), где

НС - начальная сумма,

КС - конечная сумма,

i - величина Для депозита сроком на 9 мес и ставкой 10%, i =0,1*9/12 = 0,075 или 7,5%,

п - число периодов начисления.

Рассмотрим несколько примеров:

1. Вкладчик размещает 50 тыс. рублей на срочном депозите, под 6% годовых на 4 месяца.

КС = 50000*(1+0,06*4/12) = 51000,00 р.

2. 80 тыс. рублей, под 12% годовых на 1,5 года. При этом проценты ежеквартально выплачиваются на карточку (к депозиту не присоединяются).

КС = 80000*(1+0,12*1,5) = 94400,00 р. (поскольку ежеквартальная выплата процентов не прибавляется к сумме депозита, то на конечную сумму это обстоятельство не влияет)

3. Вкладчик решил положить 50000 рублей на срочный вклад, под 8% годовых на 12 месяцев. Разрешено пополнение депозита и на 91 день было сделано пополнение счета в сумме 30000 рублей.

КС1 = 50000*(1+0,08*12/12) = 54000 р.

КС2 = 30000*(1+0,08*9/12) = 31800 р.

КС = КС1+КС2 = 54000 + 31800 = 85800 р.

Сложный процент. Формула расчета

Если в условиях размещения вклада указано, что возможна капитализация или реинвестирование, то это говорит о том, что в этом случае будет использован сложный процент, расчет которого выполняется по такой формуле:

КС = (1 + i) n *НС

Обозначения такие же, как и в формуле для простого процента.

Бывает так, что проценты выплачиваются чаще, чем один раз в год. В этом случае сложный немного по-другому:

КС = (1 + i/к) nk *НС, где

к - частота накоплений в год.

Вернемся к нашему примеру, в котором банк принял срочный депозит в 80 тыс. рублей, под 12% годовых на 1,5 года. Допустим, что проценты также выплачиваются ежеквартально, но на этот раз они будут прибавляться к телу вклада. То есть, наш депозит будет с капитализацией.

КС = (1+0,12/4) 4*1,5 *800000 = 95524,18 р.

Как вы уже успели, наверное, заметить, полученный результат оказался на 1124,18 рублей больше.

Преимущество сложных процентов

Сложный процент по сравнению с простым всегда приносит больше прибыли, причем эта разница со временем увеличивается все быстрее и быстрее. Этот механизм способен превратить любой стартовый капитал в сверхприбыльную машину, стоит лишь дать ему достаточное время. В свое время Альберт Эйнштейн назвал сложный процент самой мощной силой в природе. По сравнению с другими видами инвестиций такой имеет значительные преимущества, особенно когда инвестор выбирает долгосрочный период. По сравнению с акциями, сложный процент имеет намного меньший риск, а стабильные облигации дают меньший доход. Конечно, любой банк может со временем разориться (всякое случается), но выбирая банковское учреждение, которое участвует в государственной программе страхования депозитов, можно свести к минимуму и этот риск.

Таким образом, можно утверждать, что сложный процент имеет намного большие перспективы по сравнению с практически любым финансовым инструментом.

Сложные проценты применяются в долгосрочных финансово-кредитных операциях, если проценты не выплачиваются периодически сразу после их начисления за прошедший интервал времени, а присоединяются к сумме долга. Присоединение начисленных процентов к сумме, которая служила базой для их определения, часто называют капитализацией процентов.

Формула наращения по сложным процентам

Пусть первоначальная сумма долга равна P , тогда через один год сумма долга с присоединенными процентами составит P (1+ i ) , через 2 года P (1+ i )(1+ i )= P (1+ i ) 2 , через n лет - P (1+ i ) n . Таким образом, получаем формулу наращения для сложных процентов

S=P(1+i) n , (19)

где S - наращенная сумма, i - годовая ставка сложных процентов, n - срок ссуды, (1+ i ) n - множитель наращения.

В практических расчетах в основном применяют дискретные проценты, т.е. проценты, начисляемые за одинаковые интервалы времени (год, полугодие, квартал и т.д.). Наращение по сложным процентам представляет собой рост по закону геометрической прогрессии, первый член которой равен P , а знаменатель (1+ i ).

Отметим, что при сроке n <1 наращение по простым процентам дает больший результат, чем по сложным, а при n >1 - наоборот. В этом нетрудно убедиться на конкретных числовых примерах. Наибольшее превышение суммы, наращенной по простым процентам, над суммой, наращенной по сложным процентам, (при одинаковых процентных ставках) достигается в средней части периода.

Формула наращения по сложным процентам,
когда ставка меняется во времени

В том случае, когда ставка сложных процентов меняется во времени, формула наращения имеет следующий вид

(20)

где i 1 , i 2 ,..., i k - последовательные значения ставок процентов, действующих в периоды n 1, n 2,..., nk соответственно.

Пример 6.

В договоре зафиксирована переменная ставка сложных процентов, определяемая как 20% годовых плюс маржа 10% в первые два года, 8% в третий год, 5% в четвертый год. Определить величину множителя наращения за 4 года.

Решение.

(1+0,3) 2 (1+0,28)(1+0,25)=2,704

Формула удвоения суммы

В целях оценки своих перспектив кредитор или должник может задаться вопросом: через сколько лет сумма ссуды возрастет в N раз при данной процентной ставке. Обычно это требуется при прогнозировании своих инвестиционных возможностей в будущем. Ответ получим, приравняв множитель наращения величине N :

А) для простых процентов

(1+ ni прост. ) = N , откуда

. (21)

Б) для сложных процентов

(1+ i сложн. ) n = N , откуда

. (22)

Особенно часто используется N =2. Тогда формулы (21) и (22) называются формулами удвоения и принимают следующий вид:

А) для простых процентов

, (23)

Б) для сложных процентов

. (24)

Если формулу (23) легко применять для прикидочных расчетов, то формула (24) требует применения калькулятора. Однако при небольших ставках процентов (скажем, менее 10%) вместо нее можно использовать более простую приближенную. Ее легко получить, если учесть, что ln 2  0,7, а ln (1+ i )  i . Тогда

n » 0,7/ i . (25)

Пример 7.

Решение.

а) При простых процентах:

лет.

б) При сложных процентах и точной формуле:

Года.

в) При сложных процентах и приближенной формуле:

n » 0,7/i = 0,7/0,1 =7 лет .

Выводы:

1) Одинаковое значение ставок простых и сложных процентов приводит к совершенно различным результатам.

2) При малых значениях ставки сложных процентов точная и приближенная формулы дают практически одинаковые результаты.

Начисление годовых процентов при дробном числе лет

При дробном числе лет проценты начисляются разными способами:

1) По формуле сложных процентов

S=P(1+i) n , (26)

2) На основе смешанного метода, согласно которому за целое число лет начисляются сложные проценты, а за дробное - простые

S=P(1+i) a (1+bi) , (27)

где n = a + b , a -целое число лет, b -дробная часть года.

3) В ряде коммерческих банков применяется правило, в соответствии с которым за отрезки времени меньше периода начисления проценты не начисляются, т.е.

S=P(1+i) a . (28)

Номинальная и эффективная ставки процентов

Номинальная ставка . Пусть годовая ставка сложных процентов равна j , а число периодов начисления в году m . Тогда каждый раз проценты начисляют по ставке j / m . Ставка j называется номинальной. Начисление процентов по номинальной ставке производится по формуле:

S=P(1+j/m) N , (29)

где N - число периодов начисления.

Если срок ссуды измеряется дробным числом периодов начисления, то при m разовом начислении процентов в году наращенную сумму можно рассчитывать несколькими способами, приводящими к различным результатам:

1) По формуле сложных процентов

S=P(1+j/m) N/ t , (30)

где N / t - число (возможно дробное) периодов начисления процентов, t - период начисления процентов,

2) По смешанной формуле

, (31)

где a - целое число периодов начисления (т.е. a = [ N / t ] - целая часть от деления всего срока ссуды N на период начисления t ),

b - оставшаяся дробная часть периода начисления ( b = N / t - a ).

Пример 8.

Размер ссуды 20 млн. руб. Предоставлена на 28 месяцев. Номинальная ставка равна 60% годовых. Начисление процентов ежеквартальное. Вычислить наращенную сумму в трех ситуациях: 1) когда на дробную часть начисляются сложные проценты, 2) когда на дробную часть начисляются простые проценты 3) когда дробная часть игнорируется. Результаты сравнить.

Решение.

Начисление процентов ежеквартальное. Всего имеется кварталов.

1) = 73,713 млн. руб.

2) = 73,875 млн. руб.

3) S=20(1+0,6/4) 9 = 70,358 млн . руб .

Из сопоставления наращенных сумм видим, что наибольшего значения она достигает во втором случае, т.е. при начислении на дробную часть простых процентов.

Эффективная ставка показывает, какая годовая ставка сложных процентов дает тот же финансовый результат, что и m -разовое наращение в год по ставке j / m .

Если проценты капитализируются m раз в год, каждый раз со ставкой j / m , то, по определению, можно записать равенство для соответствующих множителей наращения:

(1+i э ) n =(1+j/m) mn , (32)

где i э - эффективная ставка, а j - номинальная. Отсюда получаем, что связь между эффективной и номинальной ставками выражается соотношением

(33)

Обратная зависимость имеет вид

j=m[(1+i э ) 1/m -1]. (34)

Пример 9.

Вычислить эффективную ставку процента, если банк начисляет проценты ежеквартально, исходя из номинальной ставки 10% годовых.

Решение

i э =(1+0,1/4) 4 -1=0,1038, т.е. 10,38%.

Пример 10.

Определить какой должна быть номинальная ставка при ежеквартальном начислении процентов, чтобы обеспечить эффективную ставку 12% годовых.

Решение.

j =4[(1+0,12) 1/4 -1]=0,11495, т.е. 11,495%.

Учет (дисконтирование) по сложной ставке процентов

Здесь, также как и в случае простых процентов, будут рассмотрены два вида учета - математический и банковский.

Математический учет . В этом случае решается задача обратная наращению по сложным процентам. Запишем исходную формулу для наращения

S=P(1+i) n

и решим ее относительно P

, (35)

где

(36)

учетный или дисконтный множитель.

Если проценты начисляются m раз в году, то получим

, (37)

где

(38)

дисконтный множитель.

Величину P , полученную дисконтированием S , называют современной или текущей стоимостью или приведенной величиной S . Суммы P и S эквивалентны в том смысле, что платеж в сумме S через n лет равноценен сумме P , выплачиваемой в настоящий момент.

Разность D = S - P называют дисконтом .

Банковский учет . В этом случае предполагается использование сложной учетной ставки. Дисконтирование по сложной учетной ставке осуществляется по формуле

P=S(1-d сл ) n , (39)

где d сл - сложная годовая учетная ставка.

Дисконт в этом случае равен

D=S-P=S-S(1-d сл ) n =S. (40)

При использовании сложной учетной ставки процесс дисконтирования происходит с прогрессирующим замедлением, так как учетная ставка каждый раз применяется к сумме, уменьшенной за предыдущий период на величину дисконта.

Номинальная и эффективная учетные ставки процентов

Номинальная учетная ставка . В тех случаях, когда дисконтирование применяют m раз в году, используют номинальную учетную ставку f . Тогда в каждом периоде, равном 1/ m части года, дисконтирование осуществляется по сложной учетной ставке f / m . Процесс дисконтирования по этой сложной учетной m раз в году описывается формулой

P=S(1-f/m) N , (41)

где N - общее число периодов дисконтирования (N = mn ).

Дисконтирование не один, а m раз в году быстрее снижает величину дисконта.

Эффективная учетная ставка . Под эффективной учетной ставкой понимают сложную годовую учетную ставку, эквивалентную (по финансовым результатам) номинальной, применяемой при заданном числе дисконтирований в году m .

В соответствии с определением эффективной учетной ставки найдем ее связь с номинальной из равенства дисконтных множителей

(1-f/m) mn =(1-d сл ) n ,

из которого следует, что

d сл =1-(1-f/m) m . (42)

Отметим, что эффективная учетная ставка всегда меньше номинальной.

Наращение по сложной учетной ставке. Наращение является обратной задачей для учетных ставок. Формулы наращения по сложным учетным ставкам можно получить, разрешая соответствующие формулы для дисконтирования (39 и 41) относительно S . Получаем

из P=S(1-d сл) n

, (43)

а из P = S (1- f / m ) N

. (44)


Пример 11.

Какую сумму следует проставить в векселе, если реально выданная сумма равна 20 млн. руб., срок погашения 2 года. Вексель рассчитывается, исходя из сложной годовой учетной ставки 10%.

Решение.

млн. руб.

Пример 12.

Решить предыдущую задачу при условии, что наращение по сложной учетной ставке осуществляется не один, а 4 раза в год.

Решение.

млн. руб.

Наращение и дисконтирование

Наращенная сумма при дискретных процентах определяется по формуле

S = P (1+ j / m ) mn ,

где j - номинальная ставка процентов, а m - число периодов начисления процентов в году.

Чем больше m , тем меньше промежутки времени между моментами начисления процентов. В пределе при m ® ¥ имеем

S= lim P(1+j/m) mn =P lim [(1+j/m) m ] n . (45)

m ® ¥ m ® ¥

Известно, что

lim (1+j/m) m =lim [(1+j/m) m/j ] j =e j ,

m ® ¥ m ® ¥

где e - основание натуральных логарифмов.

Используя этот предел в выражении (45), окончательно получаем, что наращенная сумма в случае непрерывного начисления процентов по ставке j равна

S = Pe jn . (46)

Для того, чтобы отличать ставку непрерывных процентов от ставок дискретных процентов, ее называют силой роста и обозначают символом d . Тогда

S=Pe d n . (47)

Сила роста d представляет собой номинальную ставку процентов при m ® ¥ .

Дисконтирование на основе непрерывных процентных ставок осуществляется по формуле

P=Se - d n . (48)

Связь дискретных и непрерывных процентных ставок

Дискретные и непрерывные процентные ставки находятся в функциональной зависимости, благодаря которой можно осуществлять переход от расчета непрерывных процентов к дискретным и наоборот. Формулу эквивалентного перехода от одних ставок к другим можно получить путем приравнивания соответствующих множителей наращения

(1+i) n =e d n . (49)

Из записанного равенства следует, что

d = ln (1+ i ) , (50)

i = e d -1 . (51)

Пример 13.

Годовая ставка сложных процентов равна 15%, чему равна эквивалентная сила роста,

Решение.

Воспользуемся формулой (50)

d = ln (1+ i )= ln (1+0,15)=0,13976,

т.е. эквивалентная сила роста равна 13,976%.

Расчет срока ссуды и процентных ставок

В ряде практических задач начальная (P ) и конечная (S ) суммы заданы контрактом, и требуется определить либо срок платежа, либо процентную ставку, которая в данном случае может служить мерой сравнения с рыночными показателями и характеристикой доходности операции для кредитора. Указанные величины нетрудно найти из исходных формул наращения или дисконтирования. По сути дела, в обоих случаях решается в известном смысле обратная задача.

Срок ссуды

При разработке параметров соглашения и оценивании сроков достижения желательного результата требуется определить продолжительность операции (срока ссуды) через остальные параметры сделки. Рассмотрим этот вопрос подробнее.

i .

S=P(1+i) n

следует, что

(52)

где логарифм можно взять по любому основанию, поскольку он имеется как в числителе, так и в знаменателе.

m раз в году из формулы

S=P(1+j/m) mn

получаем

(53)

d . Из формулы

P=S(1-d) n

имеем (54)

m раз в году. Из

P=S(1-f/m) mn

приходим к формуле

(55)

При наращивании по постоянной силе роста. Исходя из

S = Pe d n

получаем

ln ( S / P )= d n . (56)

Расчет процентных ставок

Из тех же исходных формул, что и выше, получим выражения для процентных ставок.

А) При наращивании по сложной годовой ставке i . Из исходной формулы наращения

S=P(1+i) n

следует, что

(57)

Б) При наращивании по номинальной ставке процентов m раз в году из формулы

S=P(1+j/m) mn

получаем (58)

В) При дисконтировании по сложной годовой учетной ставке d . Из формулы

P=S(1-d) n

имеем (59)

Г) При дисконтировании по номинальной учетной ставке m раз в году. Из

P=S(1-f/m) mn

приходим к формуле

(60)

Д) При наращивании по постоянной силе роста. Исходя из

S = Pe d n

получаем

(61)

Начисление процентов и инфляция

Следствием инфляции является падение покупательной способности денег, которое за период n характеризуется индексом J n . Индекс покупательной способности равен обратной величине индекса цен J p , т.е.

J n =1/ J p . (62)

Индекс цен показывает во сколько раз выросли цены за указанный промежуток времени.

Наращение по простым процентам

Если наращенная за n лет сумма денег составляет S , а индекс цен равен J p , то реально наращенная сумма денег, с учетом их покупательной способности, равна

C=S/J p . (63)

Пусть ожидаемый средний годовой темп инфляции (характеризующий прирост цен за год) равен h . Тогда годовой индекс цен составит (1+ h ).

Если наращение производится по простой ставке в течение n лет, то реальное наращение при темпе инфляции h составит

(64)

где в общем случае

(65)

и, в частности, при неизменном темпе роста цен h ,

J p =(1+h) n . (66)

Процентная ставка, которая при начислении простых процентов компенсирует инфляцию, равна

(67)

Один из способов компенсации обесценения денег заключается в увеличении ставки процентов на величину так называемой инфляционной премии. Скорректированная таким образом ставка называется брутто-ставкой . Брутто-ставка, которую мы будем обозначать символом r , находится из равенства скорректированного на инфляцию множителя наращения по брутто-ставке множителю наращения по реальной ставке процента

(68)

откуда

(69)

Наращение по сложным процентам

Наращенная по сложным процентам сумма к концу срока ссуды с учетом падения покупательной способности денег (т.е. в неизменных рублях) составит

(70)

где индекс цен определяется выражением (65) или (66), в зависимости от непостоянства или постоянства темпа инфляции.

В этом случае падение покупательной способности денег компенсируется при ставке i = h , обеспечивающей равенство C = P .

Применяются два способа компенсации потерь от снижения покупательной способности денег при начислении сложных процентов.

А) Корректировка ставки процентов , по которой производится наращение, на величину инфляционной премии. Ставка процентов, увеличенная на величину инфляционной премии, называется брутто-ставкой. Будем обозначать ее символом r . Считая, что годовой темп инфляции равен h , можем написать равенство соответствующих множителей наращения

(71)

где i - реальная ставка.

Отсюда получаем формулу Фишера

r=i+h+ih . (72)

То есть инфляционная премия равна h + ih .

Б) Индексация первоначальной суммы P . В этом случае сумма P корректируется согласно движению заранее оговоренного индекса. Тогда

S=PJ p (1+i) n . (73)

Нетрудно заметить, что и в случае А) и в случае Б) в итоге мы приходим к одной и той же формуле наращения (73). В ней первые два сомножителя в правой части отражают индексацию первоначальной суммы, а последние два - корректировку ставки процента.

Измерение реальной ставки процента

На практике приходится решать и обратную задачу - находить реальную ставку процента в условиях инфляции. Из тех же соотношений между множителями наращения нетрудно вывести формулы, определяющие реальную ставку i по заданной (или объявленной) брутто-ставке r .

При начислении простых процентов годовая реальная ставка процентов равна

(74)

При начислении сложных процентов реальная ставка процентов определяется следующим выражением

(75)

Практические приложения теории

Рассмотрим некоторые практические приложения рассмотренной нами теории. Покажем как полученные выше формулы применяются при решении реальных задач по расчету эффективности некоторых финансовых операций, сравним различные методы расчетов.

Конвертация валюты и начисление процентов

Рассмотрим совмещение конвертации (обмена) валюты и наращение простых процентов , сравним результаты от непосредственного размещения имеющихся денежных средств в депозиты или после предварительного обмена на другую валюту. Всего возможно 4 варианта наращения процентов:

1. Без конвертации. Валютные средства размещаются в качестве валютного депозита, наращение первоначальной суммы производится по валютной ставке путем прямого применения формулы простых процентов.

2. С конвертацией. Исходные валютные средства конвертируются в рубли, наращение идет по рублевой ставке, в конце операции рублевая сумма конвертируется обратно в исходную валюту.

3. Без конвертации. Рублевая сумма размещается в виде рублевого депозита, на который начисляются проценты по рублевой ставке по формуле простых процентов.

4. С конвертацией. Рублевая сумма конвертируется в какую-либо конкретную валюту, которая инвестируется в валютный депозит. Проценты начисляются по валютной ставке. Наращенная сумма в конце операции обратно конвертируется в рубли.

Операции без конвертации не представляют сложности. В операции наращения с двойной конвертацией имеются два источника дохода: начисление процента и изменение курса. Причем начисление процента является безусловным источником (ставка фиксирована, инфляцию пока не рассматриваем). Изменение же обменного курса может быть как в ту, так и в другую сторону, и оно может быть как источником дополнительного дохода, так и приводить к потерям. Далее мы конкретно остановимся на двух вариантах (2 и 4), предусматривающих двойную конвертацию.

Предварительно введем следующие ОБОЗНАЧЕНИЯ:

P v - сумма депозита в валюте,

P r - сумма депозита в рублях,

S v - наращенная сумма в валюте,

S r - наращенная сумма в рублях,

K 0 - курс обмена в начале операции (курс валюты в руб.)

K 1 - курс обмена в конце операции,

n - срок депозита,

i - ставка наращения для рублевых сумм (в виде десятичной дроби),

j - ставка наращения для конкретной валюты.

ВАРИАНТ:ВАЛЮТА ® РУБЛИ ® РУБЛИ ® ВАЛЮТА

Операция состоит из трех этапов: обмена валюты на рубли, наращения рублевой суммы, обратное конвертирование рублевой суммы в исходную валюту. Наращенная сумма, получаемая в конце операции в валюте, составит

.

Как видим, три этапа операции нашли свое отражение в этой формуле в виде трех сомножителей.

Множитель наращения с учетом двойной конвертации равен

,

где k = K 1 / K 0 - темп роста обменного курса за срок операции.

Мы видим, что множитель наращения m связан линейной зависимостью со ставкой i и обратной с обменным курсом в конце операции K 1 (или с темпом роста обменного курса k ).

Исследуем теоретически зависимость общей доходности операции с двойной конвертацией по схеме ВАЛЮТА ® РУБЛИ ® РУБЛИ ® ВАЛЮТА от соотношения конечного и начального курсов обмена k .

Простая годовая ставка процентов, характеризующая доходность операции в целом, равна

.

Подставим в эту формулу записанное ранее выражение для S v

.

Таким образом с увеличением k доходность i эфф падает по гиперболе с асимптотой -1/ n . См. рис. 2.

Рис. 2.

Исследуем особые точки этой кривой. Отметим, что при k =1 доходность операции равна рублевой ставке, т.е. i эфф = i . При k >1 i эфф < i , а при k <1 i эфф > i . На рис. 1 видно, при некотором критическом значении k , которое мы обозначим как k * , доходность (эффективность) операции оказывается равной нулю. Из равенства i эфф =0 находим, что k * =1+ ni , что в свою очередь означает K * 1 = K 0 (1+ ni ).

ВЫВОД 1: Если ожидаемые величины k или K 1 превышают свои критические значения, то операция явно убыточна (i эфф <0 ).

Теперь определим максимально допустимое значение курса обмена в конце операции K 1 , при котором эффективность будет равна существующей ставке по депозитам в валюте, и применение двойной конвертации не дает никакой дополнительной выгоды. Для этого приравняем множители наращения для двух альтернативных операций

.

Из записанного равенства следует, что

или

.

ВЫВОД 2: Депозит валюты через конвертацию в рубли выгоднее валютного депозита, если обменный курс в конце операции ожидается меньше max K 1 .

ВАРИАНТ:РУБЛИ ® ВАЛЮТА ® ВАЛЮТА ® РУБЛИ

Рассмотрим теперь вариант с двойной конвертацией, когда имеется исходная сумма в рублях. В этом случае трем этапам операции соответствуют три сомножителя следующего выражения для наращенной суммы

.

Здесь также множитель наращения линейно зависит от ставки, но теперь от валютной ставки процентов. От конечного курса обмена он также зависит линейно.

Проведем теоретический анализ эффективности этой операции с двойной конвертацией и определим критические точки.

.

Отсюда, подставив выражение для S r , получаем

.

Зависимость показателя эффективности i эфф от k линейная, она представлена на рис. 3

Рис . 3.

При k=1 i эфф =j , при k>1 i эфф >j , при k<1 i эфф .

Найдем теперь критическое значение k * , при котором i эфф =0 . Оно оказывается равным

или .

ВЫВОД 3: Если ожидаемые величины k или K 1 меньше своих критических значений, то операция явно убыточна (i эфф <0 ).

Минимально допустимая величина k (темпа роста валютного курса за весь срок операции), обеспечивающая такую же доходность, что и прямой вклад в рублях, определяется путем приравнивания множителей наращения для альтернативных операций (или из равенства i эфф = i )

,

откуда min или min .

ВЫВОД 4: Депозит рублевых сумм через конвертацию в валюту выгоднее рублевого депозита, если обменный курс в конце операции ожидается больше min K 1 .

Теперь рассмотрим совмещение конвертации валюты и наращение сложных процентов. Ограничимся одним вариантом.

ВАРИАНТ:ВАЛЮТА ® РУБЛИ ® РУБЛИ ® ВАЛЮТА k =1 i э = i , при k >1 i э < i , а при k <1 i э > i .

Критическое значение k , при котором эффективность операции равна нулю, т.е. i э =0 ,

определяется как k * =(1+ i ) n , что означает равенство среднегодового темпа роста курса валюты годовому темпу наращения по рублевой ставке: .

ВЫВОД 5: Если ожидаемые величины k или K 1 больше своих критических значений, то рассматриваемая операция с двойной конвертацией явно убыточна (i э <0 ).

Максимально допустимое значение k , при котором доходность операции будет равна доходности при прямом инвестировании валютных средств по ставке

Контур финансовой операции

Финансовая или кредитная операции предполагают сбалансированность вложений и отдачи. Понятие сбалансированности можно пояснить на графике.


Рис. 5.

Пусть ссуда в размере D 0 выдана на срок T . На протяжении этого срока в счет погашения задолженности производятся, допустим, два промежуточных платежа R 1 и R 2 , а в конце срока выплачивается остаток задолженности R 3 , подводящий баланс операции.

На интервале времени t 1 задолженность возрастает до величины D 1 . В момент t 1 долг уменьшается до величины K 1 = D 1 - R 1 и т.д. Заканчивается операция получением кредитором остатка задолженности R 3 . В этот момент задолженность полностью погашается.

Назовем график типа б) контуром финансовой операции . Сбалансированная операция обязательно имеет замкнутый контур, т.е. последняя выплата полностью покрывает остаток задолженности. Контур операции обычно применяется при погашении задолженности частичными промежуточными платежами.

С помощью последовательных частичных платежей иногда погашаются краткосрочные обязательства. В этом случае существуют два метода расчета процентов и определения остатка задолженности. Первый называется актуарным и применяется в основном в операциях со сроком более года . Второй метод назван правилом торговца . Он обычно применяется коммерческими фирмами в сделках со сроком не более года .

Замечание: При начислении процентов, как правило, используются обыкновенные проценты с приближенным числом дней временных периодов.

Актуарный метод

Актуарный метод предполагает последовательное начисление процентов на фактические суммы долга. Частичный платеж идет в первую очередь на погашение процентов, начисленных на дату платежа. Если величина платежа превышает сумму начисленных процентов, то разница идет на погашение основной суммы долга. Непогашенный остаток долга служит базой для начисления процентов за следующий период и т.д. Если же частичный платеж меньше начисленных процентов, то никакие зачеты в сумме долга не делаются. Такое поступление приплюсовывается к следующему платежу.

Для случая, показанного на рис. 5 б), получим следующие расчетные формулы для определения остатка задолженности:

K 1 =D 0 (1+t 1 i)-R 1 ; K 2 =K 1 (1+t 2 i)-R 2 ; K 2 (1+t 3 i)-R 3 =0,

где периоды времени t 1 , t 2 , t 3 - заданы в годах, а процентная ставка i - годовая.


Правило торговца

Правило торговца является другим подходом к расчету частичных платежей. Здесь возможны две ситуации.

1) Если срок ссуды не превышает, сумма долга с начисленными за весь срок процентами остается неизменной до полного погашения. Одновременно идет накопление частичных платежей с начисленными на них до конца срока процентами.

2) В случае, когда срок превышает год, указанные выше расчеты, делаются для годового периодазадолженности. В конце года из суммы задолженности вычитается наращенная сумма накопленных частичных платежей. Остаток погашается в следующем году.

При общем сроке ссуды T £ 1 алгоритм можно записать следующим образом

,

где S - остаток долга на конец срока,

D - наращенная сумма долга,

K - наращенная сумма платежей,

R j - сумма частичного платежа,

t j - интервал времени от момента платежа до конца срока,

m - число частичных (промежуточных) платежей.

Переменная сумма счета и расчет процентов

Рассмотрим ситуацию, когда в банке открыт сберегатель­ный счет, и сумма счета в течение срока хранения изменяется: денежные средства снимаются, делаются дополнительные взносы. Тогда в банковской практике при расчете процентов часто используют методику расчета с вычислением так называемых процентных чисел . Каждый раз, когда сумма на счете изменяется, вычисляется процентное число C j за прошедший период j , в течение которого сумма на счете оставалась неизменной, по формуле

,

где t j - длительность j -го периода в днях.

Для определения суммы процентов, начисленной за весь срок, все процентные числа складываются и их сумма делится на постоянный делитель D :

,

где K - временная база (число дней в году, т.е. 360 либо 365 или 366), i - годовая ставка простых процентов (в %).

При закрытии счета владелец получит сумму равную последнему значению суммы на счете плюс сумму процентов.

Пример 14.

Пусть 20 февраля был открыт счет до востребования в размере P 1 =3000 руб., процентная ставка по вкладу равнялась i =20% годовых. Дополнительный взнос на счет составил R 1 =2000 руб. и был сделан 15 августа. Снятие со счета в размере R 2 =-4000 руб. зафиксировано 1 октября, а 21 ноября счет был закрыт. Требуется определить сумму процентов и общую сумму, полученную вкладчиком при закрытии счета.

Решение.

Расчет будем вести по схеме (360/360). Здесь имеются три периода, в течение которых сумма на счете оставалась неизменной: с 20 февраля по 15 августа (P 1 =3000, t 1 =10+5*30+15=175), с 15 августа по 1 октября (P 2 = P 1 + R 1 =3000+2000=5000 руб., t 2

Сумма, выплачиваемая при закрытии счета, равна

P 3 +I=1000+447.22=1447 руб . 22 коп .

Теперь покажем связь этой методики с формулой простых процентов. Рассмотрим в алгебраическом виде представленный выше пример.

C умму, выплачиваемую при закрытии счета, найдем следующим образом

Таким образом, мы получили выражение, из которого следует, что на каждую сумму, добавляемую или снимаемую со счета, начисляются проценты с момента совершения соответствующей операции до закрытия счета. Эта схема соответствует правилу торговца, рассмотренному в разделе 6.2.

Изменение условий контракта

В практике часто возникает необходимость в изменении условий контракта: например, должник может попросить об отсрочке срока погашения долга или, напротив, изъявить желание погасить его досрочно, в ряде случаев может возникнуть потребность объединить (консолидировать) несколько долговых обязательств в одно и т.д. Во всех этих случаях применяется принцип финансовой эквивалентности старых (заменяемых) и новых (заменяющих) обязательств. Для решения задач по изменению условий контракта разрабатывается так называемое уравнение эквивалентности , в котором сумма заменяемых платежей, приведенных к какому-либо одному моменту времени, приравнивается сумме платежей по новому обязательству, приведенных к той же дате. Для краткосрочных контрактов применяются простые процентные ставки, а для средне- и долгосрочных - сложные ставки.

Сложные проценты применяются в долгосрочных финансово-кредитных операциях, если проценты не выплачиваются периодически сразу после их начисления за прошедший интервал времени, а присоединяются к сумме долга. Присоединение начисленных процентов к сумме, которая служила базой для их определения, иногда называют капитализацией процентов.

Формулы наращения 1) Формула наращения по сложным процентам Пусть первоначальная сумма долга равна Р, тогда через один год сумма долга с присоединенными процентами составит Р(1+i), через 2 года - Р (1+i) = Р (1+i 2) через n лет - Р (1+i)n. Таким образом, получаем формулу наращения для сложных процентов. S = P (1+i) n где S - наращенная сумма; i - годовая ставка сложных процентов; n - срок ссуды; (1 + i)n - множитель наращения. В практических расчетах в большинстве случаях применяют дискретные проценты, т. е. проценты, начисляемые за одинаковые интервалы времени (год, полугодие, квартал и т. д.). Наращение по сложным процентам представляет собой рост по закону геометрической прогрессии, первый член которой равен Р, а знаменатель (1+i). Наращенные суммы по формулам простых и сложных процентов (множители наращения, соответственно, (1 + ni) и (1 + i) n) различаются между собой даже при условии одинакового периода начисления и одинаковой процентной ставки. Покажем это на примере.

Пример 9. Исходная сумма кредита 100 000 ден. ед. Ставка 30 % годовых. Определить наращенную сумму по простым и сложным процентам за 0, 5 года, 1 год и 2 года. Решение. S 1 = 100000 · (1 + 0, 5 · 0, 3) = 115000 ден. ед. S 2 = 100000 · (1 + 1 · 0, 3) = 130000 ден. ед. S 3 = 100000 · (1 + 2 · 0, 3) = 160000 ден. ед. S 4 = 100000 · (1 + 0, 3) 1/2 = 114017 ден. ед. S 5 = 100000 · (1 + 0, 3) 1 = 130000 ден. ед. S 6 = 100000 · (1 + 0, 3) 2 = 169000 ден. ед. Результаты расчетов запишем в таблицу. Проценты Период начисления суммы 0, 5 года 1 год 2 года Простые 115000 ден. ед. 130000 ден. ед. 160000 ден. ед. Сложные 114017 ден. ед. 130000 ден. ед. 169000 ден. ед.

Обобщая полученные результаты расчетов, можно сделать следующие выводы: 1) при периоде менее года простые проценты более выгодны кредитору, банку; 2) при периоде в 1 год использование простых и сложных процентов приводит к равным результатам; 3) при периоде более года использование сложных процентов приводит к более интенсивному росту наращенной суммы, т. е. выгоднее кредитору, банку.

2) Формула наращения по сложным процентам при изменении ставки во времени. В том случае, когда ставка сложных процентов меняется во времени, формула наращения имеет следующий вид S = P (1 + i 1) n 1 (1 + i 2) n 2 … (1 + ik)k где i 1, i 2. . . , ik - последовательные значения ставок процентов, действующих в периоды n 1, n 2. . . , nk соответственно. Пример 10. В договоре зафиксирована переменная ставка сложных процентов, определяемая как 15 % годовых, плюс маржа 6 % в первые два года, 8 % - в третий год, 10% -в четвертый год. Определить величину множителя наращения за 4 года. Решение. (1 + 0, 21) 2 (1 + 0, 23) (1 + 0, 25) = 1, 83

3) Формулы удвоения суммы. В целях оценки своих перспектив кредитору и должнику интересно знать, через сколько лет сумма ссуды возрастет в N раз при данной процентной ставке. Для этого приравняем множитель наращения величине N, в результате получим: а) для простых процентов (1 + niпр) = N, тогда n = (N – 1) / iпр б) для сложных процентов (1 + iсл)n = N, тогда n = ln. N/ln(1 + icл) Эти две формулы называются формулами удвоения и принимают следующий вид: а) для простых процентов n = 1/iпр б) для сложных процентов n = ln 2/ln (1 + iсл) При небольших ставках процентов (менее 10%) вместо формулы n = ln 2/ln (1 + iсл) можно использовать более простую приближенную, если учесть, что ln 2 ˜ 0, 7, а ln (1 + i) ~ i. Тогда n ~ 0, 7/i

Пример 11. Рассчитать, за сколько лет долг увеличится вдвое при ставке простых и сложных процентов, равной 3 %. Для ставки сложных процентов расчеты выполнить по точной и приближенной формулам. Результаты сравнить. Решение. а) Для случая простых процентов n = 1/iпр = 1/0, 03 = 33, 33 лет б) при сложных процентах, вычисленных по точной формуле, n = ln 2/ln (1 + iсл) = 0, 6931 ln (1 + 0, 03) = 23, 45 в) при сложных процентах, вычисленных по приближенной формуле: n ~ 0, 7/i ~ 0, 7/0, 03 ~ 23, 33 лет Таким образом, одинаковое значение ставок простых и сложных процентов приводит к различным результатам, при малых значениях ставки сложных процентов точная и приближенная формулы дают практически одинаковые результаты.

4) Начисление годовых процентов при дробном числе лет При дробном числе лет проценты начисляются разными способами: 1) по формуле сложных процентов S = P (1 + i) n 2) на основе смешанного метода, согласно которому за целое число лет начисляются сложные проценты, а за дробное - простые, S = P (1 + i) a (1 + bi) где n = а + b, а - целое число лет, b - дробная часть года; 3) в ряде коммерческих банков применяется правило, в соответствии с которым за отрезки времени меньше периода начисления проценты не начисляются, т. е. S = P (1 + i) a

Номинальная и эффективная ставки процентов 1) Номинальная ставка Пусть годовая ставка сложных процентов равна j, а число периодов начисления в году т. Тогда каждый раз проценты начисляют по ставке j/m. Ставка j называется номинальной. Начисление процентов по номинальной ставке производится по формуле S = P (1 + j/m) N где N - число периодов начисления, М= mn. Если срок ссуды измеряется дробным числом периодов начисления, то при m разовом начислении процентов в году наращенную сумму можно рассчитывать несколькими способами, приводящими к различным результатам: 1) по формуле сложных процентов S = P (1 + j/m) N/r где N/r- число периодов начисления процентов, r - период начисления процентов; 2) по смешанной формуле S = P (l + j/m) a (l + bj/m) где а - целое число периодов начисления, т. е. а = - целая часть от деления всего срока ссуды N на период начисления r, b - оставшаяся дробная часть периода начисления (b = N/r - а).

Пример 12. Размер ссуды, предоставленной на 28 месяцев, равен 20 млн. ден. ед. Номинальная ставка равна 60 % годовых; начисление процентов ежеквартальное. Вычислить наращенную сумму в трех ситуациях: на дробную часть начисляются сложные проценты; на дробную часть начисляются простые проценты; дробная часть не учитывается. Результаты расчетов сравнить. Решение. Всего 28/3 периодов начисления, т. е. 9 кварталов и 1 мес. : 1) S = 20 (1 + 0, 6/4)28/3 = 73, 713 млн. ден. ед. ; 2) S = 20 (1 + 0, 6/4)9 (1 + 0, 6/4 1/3) = 73, 875 млн. ден. ед. ; 3) S = 20 (l + 0, 6/4)9 = 70, 358 млн. ден. ед. Из полученных результатов расчета следует, что наибольшего значения наращенная сумма достигает во втором случае, т. е. при начислении на дробную часть простых процентов. Таким образом, для ссудодателя выгоднее второй вариант, так как итоговая сумма получается максимальной, а для заемщика предпочтительнее третий вариант, так как итоговая сумма минимальна.

2) Эффективная ставка показывает, какая годовая ставка сложных процентов дает тот же финансовый результат, что и m-разовое наращение в год по ставке j/m. Если проценты капитализируются т раз в год, каждый раз со ставкой j/m, то можно записать равенство для соответствующих множителей наращения: (1 + iэ) n = (1 + j/m) mn где iэ - эффективная ставка, а j - номинальная. Отсюда получаем, что связь между эффективной и номинальной ставками выражается соотношением iэ = (1 + j/m) m – 1 Обратная зависимость имеет вид j = m [(1 + iэ) 1/m – 1] Пример 13. Банк начисляет сложные проценты на вклад, исходя из годовой номинальной ставки 0, 12. Вычислить эффективную годовую процентную ставку при ежемесячной и ежеквартальной капитализации процентов. Решение. По формуле iэ = (1 + j/m) m – 1 получаем: Iэ = (1 + j/m) m – 1 = (1 + 0, 12/12) 12 – 1 = 1, 192 – 1 = 0, 192 Iэ = (1 + j/m) m – 1 = (1 + 0, 12/4) 4 – 1 = 1, 1255 – 1 = 0, 1255

Пример 14. Определить, какой должна быть номинальная ставка при ежеквартальном начислении процентов, чтобы обеспечить эффективную ставку 12 % годовых. Решение. Использование формулы j = m [(1 + iэ) 1/m – 1 дает: j = m [(1 + iэ) 1/m – 1] = 4 [(1 + 0, 12) 1/4 – 1] = 0, 115 3) Учет (дисконтирование) по сложной ставке процентов Как и в случае простых процентов, рассмотрим два вида учета - математический и банковский. Математический учет. В этом случае решается задача, обратная наращению по сложным процентам. Запишем исходную формулу для наращения: S = P (1 + i) n из нее найдем Р: P = S/(1 + i) n = Su n Где u n = 1/(1 + i) n = (1 + i) -n - учетный, или дисконтный, множитель.

Если проценты начисляются т раз в году, то P = S/(1 + j/m) mn = Su mn Где u mn = 1/(1 + j/m) mn = (1 + j/m) –mn - дисконтный множитель. Величину Р, полученную дисконтированием S, называют современной или текущей стоимостью или приведенной величиной S. Дисконтный множитель показывает, во сколько раз первоначальная сумма меньше наращенной. Банковский учет. В этом случае предполагается использование сложной учетной ставки. Дисконтирование по сложной учетной ставке осуществляется по формуле P = S (1 – dсл) n где dсл - сложная годовая учетная ставка. Дисконт определяется как D = S – P = S – S (1 - dсл) = S При использовании сложной учетной ставки процесс дисконтирования происходит с прогрессирующим замедлением, так как учетная ставка каждый раз применяется к сумме, уменьшенной за предыдущий период на величину дисконта.

4) Номинальная учетная ставка процентов В тех случаях, когда дисконтирование применяют m раз в году, используют номинальную учетную ставку f. Тогда в каждом периоде, равном 1/m части года, дисконтирование осуществляется по сложной учетной ставке f/m. Процесс дисконтирования по этой сложной учетной ставке описывается формулой P = S (1 – f/m) N где N=тn - общее число периодов дисконтирования. Дисконтирование не один, а m раз в году быстрее снижает величину дисконта. 5) Эффективная учетная ставка Под эффективной учетной ставкой понимают сложную годовую учетную ставку, эквивалентную (по финансовым результатам) номинальной, применяемой при заданном числе т дисконтирований в году. В соответствии с определением эффективной учетной ставки, найдем ее связь с номинальной из равенства дисконтных множителей: (1 – f/m) mn = (1 – dcл) n из которого следует, что dсл = 1 – (1 – f/m) m Отметим, что эффективная учетная ставка всегда меньше номинальной.

6) Наращение по сложной учетной ставке Наращение является обратной задачей для расчета учетных ставок. Формулы наращения по сложным учетным ставкам можно получить из формул дисконтирования P = S (1 – dсл) n и P = S (1 – f/m) N. Получаем: S = P/(1 – dсл) n S = P/(1 - f/m) N Пример 15. Рассчитать, какую сумму следует проставить в векселе, если реально выданная сумма равна 200 000 ден. ед. , срок погашения 2 года. Сумма векселя рассчитывается, исходя из сложной годовой учетной ставки 10 %. Решение. По формуле S = P/(1 – dсл) n получаем: S = 200000/(1 – 0, 1) 2 = 246913, 58 ден. ед. Пример 16. Решить предыдущую задачу при условии, что наращение по сложной учетной ставке осуществляется не один, а 4 раза в год. Решение. Подстановка в формулу S = P/(1 - f/m) N значений т = 4 и N = 4 2 дает: S = 200000/(1 – 0, 1/4) 8 = 244902, 42 ден. ед.

Непрерывные проценты 1) Наращение и дисконтирование Наращенная сумма при дискретных процентах, как было показано, определяется по формуле S = P (1 + j/m) mn где j - номинальная ставка процентов, m - число периодов начисления процентов в году. Чем больше m, тем меньше промежутки времени между моментами начисления процентов. В пределе при m ∞ имеем Используя второй замечательный предел получаем: 1 2 Используя этот предел в выражении (1), получаем, что формула наращенной суммы в случае непрерывного начисления процентов по ставке j имеет вид S = Pe in

Для того чтобы отличать ставку непрерывных процентов от ставок дискретных процентов, ее называют силой роста и обозначают б: S = Pe бn Сила роста представляет собой номинальную ставку процентов при т ∞. Дисконтирование на основе непрерывных процентных ставок осуществляется по формуле P = Se –бn 2)Cвязь дискретных и непрерывных процентных ставок Дискретные и непрерывные процентные ставки находятся в функциональной зависимости, благодаря которой можно осуществлять переход от расчета непрерывных процентов к дискретным и наоборот. Формулу эквивалентного перехода от одних ставок к другим можно получить, приравнивая соответствующие множители наращения: (1+ i) n = e бn Из этого равенства следует, что б = ln(1+ i) i = еб – 1

Расчеты с простыми процентными ставками проводятся достаточно легко и просто. Однако они имеют ограниченное применение.

Допустим, что банк выплачивает простые проценты в течение 3 лет по ставке i. При первоначальном вкладе, равном Р, вкладчик через год будет иметь на счете сумму S 1:

S 1 = P (1 + i),

через 2 года — сумму S2 :

S 2 = P (1 + 2 i),

через 3 года — сумму S3 :

S 3 = P (1 + 3 i).

Однако вкладчик может через год закрыть счет, получить сумму S1 , включающую проценты, и положить эту сумму на новый счет. В конце следующего года он может повторить эту операцию. В результате после первого года он получит сумму S’1 , равную прежней сумме S1 :

S = S 1 = P (1 + i),

после второго года уже новую сумму S’1 :

после третьего года сумму S’3 :

Новые суммы будут больше прежних, поскольку в них содержатся проценты не только на первоначальный вклад, но и на уже начисленные ранее проценты. В математической форме это соответствует неравенствам:

Таким образом, вкладчику выгодно снимать деньги со счета и класть их на другой счет. Проводить такую операцию каждый квартал выгоднее, чем каждый год, а каждый месяц выгоднее, чем каждый квартал. Чем чаще вкладчик перекладывает деньги, тем больший доход он получит. Следовательно, значительная часть вкладчиков банка будет стремиться проводить такую операцию.

Для банка же это сопряжено с разного рода затруднениями в работе. Во-первых, для проведения таких операций банку необходимо держать дополнительный резерв денежных средств. Во-вторых, обилие таких операций затрудняет текущую банковскую работу. Наконец, в-третьих, вкладчик, закрыв счет, может положить полученные деньги в другой банк, условия которого в данный момент покажутся ему более выгодными.

В связи с этим банки сами берут на себя инициативу проведения такой операции. Проценты, возникающие по вкладу, присоединяются к вкладу, так что новые проценты начисляются на увеличенную сумму, включающую начисленные ранее проценты. Такая операция называется начислением сложных процентов.

Рост суммы в соответствии со сложными процентами можно представлять себе как рост по простым процентам, применяемым к увеличивающейся сумме, включающей в себя ранее накопленные проценты, т. е. как периодическое реинвестирование средств, вложенных под простые проценты, в каждом периоде начисления.

На практике при расчете сложных процентов обычно некоторый промежуток времени принимают за стандартный период начисления (год, квартал, месяц и т. д.) и дальше рассчитывают проценты, начисляемые за такие одинаковые стандартные периоды. Другими словами, время при таких вычислениях рассматривается как дискретная величина, измеряемая стандартными периодами. При этом говорят о дискретных процентах.

Если уменьшать длину такого стандартного промежутка, от квартала перейти к месяцу, неделе, дню и т. д., то в пределе мы от дискретных процентов перейдем к непрерывным процентам, начисляемым за бесконечно малый промежуток времени.

2.1.1. Рост суммы при сложной процентной ставке

Пусть первоначальная сумма равна Р и она растет в соответствии со сложной процентной ставкой, равной i за один период времени. Через n таких периодов выросшая сумма S будет определяться следующей формулой (формулой сложных процентов):

S = P (1+i) n

Величину (1+i) n называют обычно коэффициентом роста, или множителем наращения. Она показывает, в какую денежную сумму превратится каждый рубль первоначально вложенных средств через n периодов времени.

Если вычислять накопленную сумму денег вместе с процентами последовательно за каждый год

за первый год:

за второй год:

за п-ый год:

то получим, что полученные денежные суммы являются членами геометрической прогрессии, в которой первый член - это величина Р, а знаменатель прогрессии (1+i)

Если при начислении по формуле сложных процентов воспользоваться операцией реинвестирования, т. е. снять со счета деньги вместе с процентами и положить их на счет снова, то вкладчик при этом ничего не выигрывает при той же процентной ставке.

Действительно, пусть вкладчик положил средства в размере Р на счет на условиях начисления сложных процентов. Через k периодов времени он снял деньги со счета и положил их вновь еще на m периодов. Тогда после первых k периодов он получит сумму Q:

Q = P(1+i) k .

Затем эта сумма Q еще через m периодов превращается в новую сумму S:

S = Q (1+i) m .

Выражая конечную сумму S через первоначальную P, получим:

S = Q (1+i) m = Р (1+i) k (1+i) m = P (1+i) k+m .

Таким образом, результат получается в точности такой же, как если бы вкладчик не проводил промежуточную операцию, а просто положил бы первоначальную сумму Р на суммарное число периодов времени, равное k + m.

2.1.2. Рост суммы при нецелом числе периодов времени

В практике финансовых организаций иногда предусматривается начисление процентов лишь за целое число периодов. Если это не предусмотреть, то при начислении процентов за нецелое число периодов используют разные способы.

Начисление за нецелое число периодов может быть проведено по той же формуле сложных процентов, что и за целое число. Например, если требуется рассчитать выросшую сумму за 5,2 периода, то расчет в этом случае ведется по формуле

S = Р (1+i) 5 (1+i) 0,2 = P (1+i) 5,2 .

Другими словами, за дробное число 0,2 периода проценты начисляются по той же схеме, что и за целое число периодов. Это позволяет написать общую формулу сложных процентов за любое время t:

S = Р (1+i) t ,

независимо от того, содержит ли оно целое или нецелое число периодов.

В ряде случаев начисление за нецелое число периодов ведется по другой, смешанной формуле. За целое число периодов проценты начисляются по формуле сложных процентов, а за дробный остаток — по формуле простых процентов. В этом случае начисления за 5,2 периода будут проведены по формуле

S = Р (1+i) 5 (1+i 0,2).

Следует иметь в виду, что начисленная сумма при этом окажется несколько больше, чем при расчете по первому способу.

Наконец, как было отмечено выше, иногда за дробную часть периода проценты вообще не начисляются. В этом случае начисления за 5,2 периода определяются формулой

S = Р (1+i) 5 .

2.1.3. Сложная переменная ставка и средние геометрические величины

Обычно в условиях договора указывается постоянная ставка процента. Однако в некоторых случаях может быть оговорена переменная ставка. Обычно это бывает связано с процессом инфляции, снижающим рост реальной величины денежной суммы, или с изменением курса валюты, с которой связаны условия договора.

В этих и подобных им случаях оговаривается изменение процентной ставки.

Рассмотрим ситуацию с переменной сложной процентной ставкой. Пусть на первом промежутке времени длиной t1 ставка равна i1 , на втором промежутке длиной t2 ставка равна i2 , на третьем промежутке длиной t3 ставка равна i3 и т. д.. Промежутки, как и раньше, могут иметь различную длину.

Рассмотрим n таких промежутков длиной t1 , t2 ... tn . Величина вклада по сложной переменной ставке к концу последнего промежутка составит:

Определим среднюю процентную ставку i для случая вклада по сложной переменной ставке.

Пусть, как и раньше, T — общий срок вклада по переменной ставке

а — доля промежутка t k в этом общем сроке:

Средняя процентная ставка i по определению удовлетворяет следующему условию: если ее подставить в формулу роста вместо каждой из ставок ik , то результат расчета при этом не изменится. Таким образом:

Отсюда получаем формулу для (1 + i) — средней величины коэффициента роста за единицу времени:

Наконец, сама средняя сложная процентная ставка i равна:

Согласно формуле среднего коэффициента роста (1 + i), он является средневзвешенной геометрической коэффициентов роста по отдельным промежуткам времени. В качестве весовых коэффициентов выступают доли соответствующих промежутков времени в общем сроке вклада.

Коэффициенты роста для тех промежутков времени, которые имеют относительно большую длину, войдут в итоговую средневзвешенную величину с большим весом.

В частном случае, когда длины всех промежутков времени равны друг другу, доля каждого из них равна 1/n, и средневзвешенная величина переходит в обычную среднюю геометрическую:

2.1.4. Расчет темпов инфляции

Темп инфляции за тот или иной период времени характеризует процентный прирост уровня цен за данный период.

Предположим, что известны темпы инфляции за январь, февраль и март. Обозначим посредством h1 , h2 , h3 темпы инфляции за эти три месяца.

Неверно думать, что квартальный темп инфляции равен сумме трех месячных темпов, т. е. что

hкв1 = h1 + h2 + h3 .

Это, конечно, не так. Такая формула не учитывает, что инфляция февраля характеризует процентный прирост цен по отношению к ценам, уже выросшим в январе, а инфляция марта указывает процентный прирост цен по отношению к ценам февраля.

Таким образом, темп инфляции за несколько периодов должен содержать в себе учет процентов на проценты, как при расчетах со сложной процентной ставкой.

При неверном способе мы обращаемся с темпами инфляции, как с простыми процентными ставками. Правильный способ требует обращаться с ними, как со сложными ставками. Рассмотрим правильный способ.

Индекс роста цен выражается следующей формулой:

где q - количество товаров учитываемых при исчислении индекса роста цен;

p -цены товаров, учитываемых при исчислении индекса роста цен в базисном периоде;

р -цены тех же товаров в отчетном периоде.

Индекс роста цен за n последовательный периодов

Темп инфляции h выражается формулой:

Таким образом, индексы роста I1 , I2 , I3 определяются формулами:

I1 , = 1 + h1 , I2 , = 1 + h2 , I3 , = 1 + h3 .

Каждый из индексов показывает, во сколько раз изменился уровень цен за данный месяц. Произведение этих индексов дает квартальный индекс Iкв1 . Квартальный индекс Iкв1 показывает, во сколько раз изменился уровень цен за первый квартал:

Iкв1 = I1 * I2 * I3 .

Для получения квартального темпа инфляции следует вычесть единицу из квартального индекса:

hкв1 = Iкв1 — 1.

Таким образом, в итоге получаем

hкв1 = Iкв1 — 1 = I1 * I2 * I3 — 1 = (1 + h1 )*(1 + h2 )*(1 + h3 ) — 1.

В разные месяцы темпы инфляции могут быть различными. Как рассчитать среднемесячный темп инфляции hсрмес в течение квартала? Для этого следует сначала рассчитать среднемесячный индекс Iсрмес по формуле

I срмес = (I 1 × I 2 ×I 3) 1/3 = (I кв1) 1/3 .

Затем среднемесячный темп инфляции hсрмес получается вычитанием 1 из среднемесячного индекса:

hсрмес = Iсрмес — 1.

Таким образом, итоговая формула расчета имеет вид:

h срмес = I срмес — 1= (I 1 × I 2 × I 3) 1/3 — 1= ((1+h 1) × (1+h 2) × (1+h 3)) 1/3 — 1.

Она полностью аналогична формуле средней сложной процентной ставки.

2.2. Годовые, квартальные, месячные ставки процента

Начисление сложных процентов часто осуществляется не один, а несколько раз в году, каждый квартал, каждый месяц и т. д. В таком случае обычно в договоре указывается номинальная ставка процента i, по которой определяется величина ставки в каждом периоде начисления ( при квартальном начислении, при месячном и т. д.).

2.2.1. Уравновешенные ставки процента

Формулы, связывающие друг с другом процентные ставки за разные периоды времени, можно получить, используя принцип финансовой эквивалентности результатов.

Финансовый результат за год, получаемый при годовой ставке , должен быть равен финансовому результату за 4 последовательных квартала, рассчитанному по формуле сложных процентов для эквивалентной квартальной ставки . Отсюда получаем равенство:

Таким образом:

При выводе формул говорилось об эквивалентности финансовых результатов за год. Важно отметить, что эквивалентность результатов при этом обеспечивается не только за годовой, но и за любой промежуток времени.

Пусть промежуток времени, исчисляемый в годах, равен n (число n не обязательно целое). Тогда этот промежуток содержит 4 . n кварталов. Наращения по годовой и эквивалентной ей квартальной ставке процента за этот промежуток времени равны друг другу,

Мы установили связь между годовой и квартальной ставками. Такое же рассуждение позволяет сформировать связь между годовыми, квартальными и месячными ставками:

Рассмотрим ситуацию в общем виде. Пусть период начисления по процентной ставке i делится на m одинаковых промежутков времени. Тогда процентная ставка i’, связанная с этими промежутками, определяется через ставку i в соответствии с соотношением

(1 + i ’) m = (1 + i).

i = (1 + i ’) m — 1,

i ’= (1 + i) 1/m — 1.

Этим путем может быть установлена связь между процентными ставками за любые два периода времени. Пусть периоды t и t’ выражены в одинаковых единицах (годах, месяцах, днях и т. п.). Пусть за период времени t установлена процентная ставка i, а за период t’ — процентная ставка i’. Эти ставки эквивалентны, если они за одинаковые промежутки времени приводят к одинаковым результатам, т. е. если соответствующие им коэффициенты наращения за одинаковые промежутки времени равны.

В качестве единого промежутка возьмем промежуток величины txt’. В нем содержатся периоды t в количестве t’ и периоды t’ в количестве t. Условие эквивалентности запишется в виде равенства:

(1 + i) t’ = (1 + i ’) t .

Отсюда получаем формулы, выражающие одну ставку через другую:

Обычно в контрактах оговаривается годовая процентная ставка. Она в этом случае называется номинальной процентной ставкой. Эквивалентные ей процентные ставки за другие периоды времени, рассчитанные в соответствии с указанными выше формулами, называются уравновешенными (или уравновешивающими).

Таким образом, говорят о номинальной годовой ставке и уравновешенных (уравновешивающих) полугодовой, квартальной, месячной, дневной ставках.

2.2.2. Относительные ставки процента

В предыдущем параграфе мы получили формулы, которые позволяют ставку процента, привязанную к одному периоду начисления, пересчитать в другую, эквивалентную ставку процента, привязанную к другому периоду начисления. В частности, эти формулы позволяют номинальную годовую ставку перевести в другие уравновешенные ставки.

Полученные формулы являются точными, но в силу своей сложности не всегда удобными для практического применения. В практике финансовых операций эти формулы часто заменяются другими, более простыми формулами. Вместо уравновешенной ставки эти упрощенные формулы определяют так называемую относительную (релятивную) ставку.

Следует отметить, что расчет по относительным ставкам, будучи достаточно простым, приводит к неточным результатам.

Пусть годовая ставка процента равна iгод . Тогда квартальная относительная ставка iкв рассчитывается по формуле

Месячная относительная ставка iмес определяется формулой

Вообще, относительная ставка за период времени t, измеряемый в годах, определится величиной:

i = i год t.

Для квартала t = 1/4, для месяца t = 1/12, так что из последней общей формулы автоматически получаются ее частные случаи для квартальной и месячной ставки.

Рассмотрим ситуацию в общем виде. Предположим, что период начисления делится на m одинаковых промежутков. Тогда относительная процентная ставка i’, связанная с такими промежутками, рассчитывается по формуле

Обратное соотношение

i = m i ’

позволяет выразить исходную ставку i через относительную i’. Установим связь между относительными ставками процента за любые два периода времени. Пусть периоды времени t и t’ измеряются в одних и тех же единицах. За период t установлена процентная ставка i, а за период t’ ставка i’. Эти ставки считаются относительными друг для друга, если они связаны соотношением:

т. е., если они равны в расчете на единицу времени. В равносильной форме это равенство имеет вид

Отсюда получаем формулы, позволяющие выразить одну ставку через другую:

Номинальная годовая ставка превращается в относительную ставку для полугодия, квартала, месяца путем деления величины годовой ставки на соответствующее число. Такой переход соответствует преобразованиям по формуле простых процентов. Однако дальнейшие преобразования, связанные и с использованием относительной ставки, проводятся по формулам сложных процентов.

Так, рост вклада за m месяцев по номинальной годовой ставке сложных процентов рассчитывают с помощью относительной ставки следующим образом. По годовой ставке iгод рассчитывают месячную ставку iмес :

i мес = i год /12,

и затем по формуле сложных процентов определяют коэффициент наращения за m месяцев. Он имеет величину:

Такой расчет приводит к искажениям.

Например, при m = 6 коэффициент наращения с помощью относительной ставки можно вычислить несколькими различными способами. Они приведут к различным результатам.

Конкретную формулу расчета можно не оговаривать в тех случаях, когда каждая из сторон готова примириться с возникающими при этом искажениями.

Точный расчет, не вносящий искажений, основан на уравновешенных ставках. Если здесь и возникают расхождения, то это связано не с существом дела, а исключительно с точностью вычислений. Точность повышается, если в расчеты вовлекать большее число десятичных разрядов или если проводить расчеты в обыкновенных дробях.

Расчеты же с относительными ставками всегда вносят те или иные искажения, не устранимые путем простого повышения точности вычислений.

2.2.3. Эффективная процентная ставка

На практике чаще пользуются относительными ставками. Их применение связано с большим удобством (в ущерб точности) и со сложившейся традицией.

Однако при проведении точного анализа и в теоретических исследованиях используют уравновешенную ставку. Ее называют также эффективной процентной ставкой .

Эффективная процентная ставка показывает тот реальный относительный доход, который возникает за год в связи с начислением процентов. Иными словами, эффективная ставка — эта годовая сложная процентная ставка, обеспечивающая ту же величину дохода, что и реально применяемый способ начисления процентов.

Если проценты начисляются раз в году, то эффективная ставка соответствует сложной номинальной процентной ставке. Если же проценты начисляются чаще, то эффективная и номинальная ставка численно могут оказаться различными. Соответствие между ними зависит от способа расчета процентов за отдельные промежутки времени.

Если реально применяемый способ помесячного (поквартального) начисления процентов основан на уравновешенных ставках, то эффективная ставка совпадает с номинальной ставкой процентов. Если же реально применяемый способ помесячного (поквартального) начисления процентов основан на относительных ставках (или еще на каких-то расчетных схемах), то эффективная и номинальная ставка окажутся различными.

2.3. Рост по простым и сложным процентным ставкам

2.3.1. Характеристики роста по простым и сложным процентам

Рассмотрим рост величины вклада по формулам простых и сложных процентов при одной и той же величине процентной ставки.

Пусть начисление процентов идет по ставке i за период времени (например, за год). Тогда рост суммы за время t от начальной величины Р определяется следующими формулами:

Для простых процентов:

S = Р (1 + i t);

Для сложных процентов:

S = Р (1 + i) t .

Начисления для нецелого числа периодов проводятся здесь по той же формуле, что и для целого числа. Для простых процентов величина S зависит от времени t по закону линейной функции. Для сложных процентов она зависит от t по закону показательной функции. На рис. 2.1 представлены графики таких зависимостей.

Рис. 2.1. Рост суммы по формулам простых и сложных процентов

Обе линии на рисунке начинаются в одной точке. При t = 0:

Если длина промежутка времени t меньше длины периода, то простые проценты дают больший рост суммы, чем сложные.

Если 0 < t < 1, то

График линейной функции, определяющей рост по формуле простых процентов, лежит при этом выше графика показательной функции, определяющей рост по формуле сложных процентов. Поэтому, если банк объявляет годовую процентную ставку по вкладам, а срок вклада меньше года, то вкладчику выгоднее, чтобы банк вел с ним расчеты по простой процентной ставке. Заемщику, взявшему в банке ссуду на срок меньше года, напротив, выгоднее рассчитываться по сложным процентам.

Если промежуток времени t равен одному периоду, то расчет по простым и сложным процентам дает один и тот же результат:

Оба графика при t = 1 проходят через одну точку. Если срок равен длине периода начисления процентов (например, году), то вкладчику или заемщику безразлично, ведутся ли с ним расчеты по простым или сложным процентам.

Если же длина промежутка t больше одного периода, то сложные проценты дают большой рост суммы, чем простые. Если t > 1, то

График показательной функции лежит выше прямой, причем с ростом t увеличивается не только величина расхождения между ними, но и скорость увеличения этого расхождения. Если срок вклада больше периода начисления процентов, то вкладчику выгоднее начисления по формуле сложных процентов, причем с ростом срока вклада эта выгода возрастает. Заемщику же, напротив, выгоднее возвращать ссуду с простыми процентами.

2.3.2. Формулы срока удвоения

Для оценки скорости роста денежной суммы часто используют так называемые формулы срока удвоения. Такие формулы позволяют рассчитать срок, за который удваивается вложенная сумма денег.

Такой срок рассчитывается путем решения уравнения, определяющего удвоение коэффициента нарастания.

Для простых процентов уравнение имеет вид

1 + i t = 2.

Для сложных процентов уравнение имеет вид

Решением этого уравнения является:

2.3.3. Связь между простыми и сложными ставками

Процентные ставки являются финансово эквивалентными, если замена в контракте одной ставки на другую не приводит к изменению финансовых результатов контракта, к изменению отношений участвующих в сделке сторон.

Если рост по простой процентной ставке за определенное время приводит к тому же результату, что и рост по сложной процентной ставке за то же время, то эти ставки финансово эквивалентны. Пусть in и ic — простая и сложная процентные ставки с одним и тем же периодом начисления (например, годовые ставки). Приравняем множители роста по этим ставкам за время t:

Отсюда можно получить формулы, позволяющие по сложной ставке рассчитать эквивалентную ей простую и по простой ставке определить эквивалентную ей сложную.

Отметим, что в формулах расчета эквивалентных ставок участвует величина промежутка времени t. При изменении длины промежутка изменяется и величина эквивалентной ставки.

Из полученных формул непосредственно следует, что при t = 1, т. е. когда длина рассматриваемого промежутка времени равна периоду начисления, эквивалентные ставки равны друг другу:

если t = 1, то in = ic .

Как показывают наши предыдущие рассуждения, для эквивалентных процентных ставок in и ic выполняются условия:

если t < 1, то in < ic ,

если t > 1, то in > ic .

2.3.4. Непрерывный рост суммы и сила роста

В банковской практике часто используется смешанная форма перевода процентных ставок, при которой сложная годовая ставка переводится, например, в квартальную не как сложная, а как простая. Дальнейшее же начисление процентов идет по формуле сложной ставки.

Например, банк объявляет условия вклада как «48 % годовых с ежеквартальным начислением процентов». Это означает, что проценты ежеквартально приплюсовываются к уже накопленной величине вклада и на них в дальнейшем начисляются проценты. Речь, таким образом, идет о сложной ставке. Однако сами квартальные проценты рассчитываются по формуле простой ставки, т. е. по формуле

i кв = i год / 4 = 12 (%).

В обратном переводе в сложную годовую ставку это дает

т. е. 57,35 % годовых вместо 48 %. Результат всегда оказывается завышенным, так что самому банку такая форма перевода невыгодна. Она выгодна клиентам банка и используется практически.

Посмотрим, к чему это приведет, если постепенно уменьшать период начисления процентов. Предположим, что такая форма перевода процентов применяется не к квартальному, а к месячному периоду.

Ежемесячное начисление по ставке

определяет годовой коэффициент роста

1,04 12 = 1,6010,

что соответствует ставке 60,10 % годовых.

Предположим, что период начисления уменьшается дальше, т. е. что год дробится на m одинаковых промежутков времени, и величина m растет. Тогда общая формула нового коэффициента годового роста выглядит следующим образом:

(1 + i/m) m .

В пределе, при , получаем величину е i . При этом рост вклада за время t (измеряемое в годах) определяется формулой

S = P e it .

Число e, участвующее в формуле, — это основание натуральных логарифмов. Оно играет важную роль в математическом анализе самых разнообразных процессов. Число е — иррациональное, его значение есть

е = 2,7182818...

Логарифмы по основанию е называются натуральными логарифмами и обозначаются символом ln. В табличном процессоре Excel соответствующая функция имеет обозначение LN.

Мы пришли к понятию непрерывных процентов через смешанную форму начисления, через соединение расчетов по простой и сложной ставке. Однако смешанная форма здесь не важна. Существенно лишь участие сложной ставки.

От понятия сложной ставки к понятию непрерывных процентов можно прейти и другим путем. Для этого достаточно формулу сложных процентов, определяющую рост первоначальной суммы Р:

S = P (1 + i) t ,

записать в другом, равносильном виде.

Формула сложных процентов определяет рост суммы по закону показательной функции. Основанием этой функции является величина (1 + i). При разных значениях процентной ставки i основания оказываются различными. Формулу сложных процентов для непрерывного времени преобразуют таким образом, чтобы при разных ставках основание оказывалось одинаковым, а изменялся бы показатель степени.

Обозначим буквой натуральный логарифм от величины (1 + i):

и, следовательно,

Таким образом, формулу сложных процентов можно заменить равносильной формулой:

Эту формулу используют обычно при анализе непрерывного роста суммы денег.

В этой формуле величина α характеризует скорость роста суммы. Величину α называют силой роста , или силой процента . Она равна скорости относительного прироста суммы, т. е. равна относительному приросту суммы за бесконечно малый промежуток времени. Сила процента представляет собой особый вид процентной ставки, предназначенный для изучения процесса роста денежной суммы в непрерывном времени.

Сила роста тесно связана со ставкой процента. Чем больше ставка процента i, тем больше сила роста α , и наоборот, чем больше сила роста α , тем больше ставка процента. Однако связь между ними не является прямо пропорциональной, линейной связью. Она имеет логарифмический характер.

Для малых значений процентная ставка практически совпадает с силой роста, однако с увеличением ставки расхождения между их численными значениями нарастают. При этом ставка процента по своему численному значению всегда больше силы роста.

Следует подчеркнуть, что эти различия не приводят к различию в росте денежной суммы. Напротив, соответствующие друг другу, но численно различающиеся величины ставки процента и силы роста обеспечивают одинаковое наращение денежной суммы за одинаковые промежутки времени.

2.4. Дисконтирование по сложной ставке

2.4.1. Дисконтирование по сложной ставке процента

Дисконтирование — это операция, позволяющая будущую сумму денег привести к настоящему моменту времени. Эта операция позволяет определить современную величину будущей суммы. Выше мы рассматривали дисконтирование по простой процентной ставке. Такое дисконтирование подразумевает рост денежной суммы по формуле простых процентов. Теперь мы рассмотрим дисконтирование по сложной процентной ставке, соответствующей росту суммы денег по формуле сложных процентов.

Исходная денежная сумма Р по формуле сложных процентов со ставкой i за время t превращается в сумму S:

Отсюда следует, что

Эта формула позволяет осуществить дисконтирование, т. е. по конечной величине S определить начальную величину Р. Множитель

называется дисконтным множителем за время t. Он является величиной, обратной множителю нарастания. Величину Р называют современной, или приведенной, величиной S. Ее называют также величиной, полученной дисконтированием S. Разность S — P называют дисконтом и обозначают обычно буквой D:

D = S — P.

Операция дисконтирования обратная операции роста суммы. Поэтому свойства дисконтирования тесно связаны со свойствами наращения. Выше было проведено сравнение роста по простым и сложным процентам. Для дисконтирования имеют место обратные соотношения.

Если длина промежутка времени меньше периода начисления (например, года), то рост по простым процентам дает большую сумму, чем рост по сложным процентам. Дисконтирование по простым процентам дает меньшую величину, чем дисконтирование по сложным процентам.

Если же длина промежутка времени больше периода начисления, то больший рост суммы дает сложная процентная ставка. Однако сложная ставка дает меньшую величину при дисконтировании.

Дисконтирование можно проводить не только для дискретного, но и для непрерывного измерения времени. Из формулы для непрерывного времени с использованием силы роста, имеющей вид

получаем формулу дисконтирования:

применяемую в дисконтных расчетах с непрерывным временем.

2.4.2. Сложная учетная ставка

В учетных операциях используют как простую, так и сложную учетную ставку. Процедуры расчетов с простой учетной ставкой были изучены выше. Теперь мы рассмотрим соответствующие процедуры для сложной учетной ставки.

Простая учетная ставка при дисконтировании применяется к одной и той же первоначальной сумме, снижение этой суммы по периодам времени происходит равномерно.

Сложная учетная ставка на каждом шаге дисконтирования применяется не к первоначальной сумме, а к сумме, уменьшенной на величину дисконта, определенного на предыдущем шаге. Процесс дисконтирования идет при этом с замедлением.

Если конечная сумма есть S и учетная ставка равна d, то дисконтирование по сложной учетной ставке за t периодов времени дает первоначальную сумму P, определяемую формулой

2.5. Годовые, квартальные, месячные учетные ставки

Выше мы рассмотрели переход от годовой сложной процентной ставки к квартальной, месячной и другим сложным процентным ставкам. В более общем виде это соответствует переходу от ставки с одним периодом начисления к ставке с другим периодом начисления. Были изучены два способа перехода: переход к уравновешенной ставке и переход к относительной ставке. Преимущество первого способа в его точности, преимущество второго способа в его простоте.

Переход от годовой учетной ставки к квартальной, месячной и другим ставкам осуществляется теми же двумя способами. Один из них дает уравновешенную учетную ставку, а другой позволяет получить относительную учетную ставку. Рассмотрим их по порядку.

2.5.1. Уравновешенные учетные ставки

Уравновешенные учетные ставки определяются в соответствии с принципом финансовой эквивалентности результатов.

Финансовый результат, получаемый за год при годовой учетной ставке dгод , должен быть равен результату, получаемому за 4 квартала по сложной учетной ставке dкв . Другими словами, должно выполняться равенство

Полученные связи между ставками обеспечивают равенство финансовых результатов не только за годовой, но и за любой промежуток времени.

Промежуток, состоящий из t лет, содержит 4 . t кварталов. Дисконтирование за этот промежуток времени по сложной годовой и по сложной квартальной ставке приводит к одинаковым результатам, т. к.

Мы установили связь между годовой и квартальной учетной ставкой. Аналогично формируем связь между годовой dгод и месячной dмес , дневной dднев и другими сложными учетными ставками:

Аналогично выражаются связи между квартальной и месячной сложной учетной ставкой:

Следовательно,

Рассмотрим ситуацию в общем виде. Пусть период начисления учетной ставки d разбит на m одинаковых промежутков. Тогда учетная ставка d’, связанная с этими промежутками, определяется через ставку d с помощью соотношения:

В общем случае таким способом может быть получена связь между любыми двумя сложными учетными ставками, начисляемыми за два различных периода времени.

Пусть периоды времени t и t’ измеряются в одинаковых временных единицах (годах, месяцах и т. п.). Пусть периоду t соответствует сложная учетная ставка d, а периоду t’ — сложная учетная ставка d’. Эти ставки эквивалентны, если они дают одинаковые финансовые результаты за равные промежутки времени, т. е. если одинаковы соответствующие дисконтные множители.

В качестве единого промежутка времени выберем промежуток длины txt’. В нем содержатся периоды t в количестве t’ единиц и периоды t’ в количестве t единиц. Условие эквивалентности выражается в виде равенства дисконтных множителей за соответствующие промежутки времени, т. е. в виде равенства

Отсюда получаем формулы, позволяющие выразить одну учетную ставку через другую:

Обычно устанавливается годовая учетная ставка, называемая номинальной учетной ставкой. По ней рассчитываются учетные ставки за другие периоды времени. Если эти ставки устанавливаются указанным здесь способом, то они называются уравновешенными (иногда их называют уравновешивающими) сложными учетными ставками.

Уравновешенные сложные учетные ставки обеспечивают финансовую эквивалентность результатов на любых промежутках времени. В этом смысле и сами такие ставки являются эквивалентными.

2.5.2. Относительные учетные ставки

Уравновешенные учетные ставки вводятся аналогично уравновешенным процентным ставкам. Относительные учетные ставки аналогичны относительным процентным ставкам.

Если годовая учетная ставка равна dгод , то относительные квартальная учетная ставка dкв , месячная учетная ставка dмес , дневная учетная ставка dднев определяются формулами:

В общем случае, пусть период начисления учетной ставки d разбит на m одинаковых промежутков. Тогда относительная учетная ставка d’ для этих промежутков связана со ставкой d соотношениями:

Можно установить связь между относительными учетными ставками за любые два периода времени. Пусть периоды t и t’ измеряются в одних и тех же единицах. За период t установлена учетная ставка d, а за период t’ — учетная ставка d’. Эти ставки являются относительными друг для друга, если для них выполняется соотношение

т. е. если их доли, приходящиеся на единицу времени, равны друг другу. Это равенство равносильно следующему:

Отсюда легко можно получить формулы, позволяющие выразить одну учетную ставку через другую:

Эти формулы позволяют не только выражать относительные учетные ставки через номинальную годовую учетную ставку, но и выражать относительные учетные ставки непосредственно друг через друга.

Расчет относительных учетных ставок соответствует преобразованиям по формулам простых ставок. Однако использование относительных учетных ставок соответствует формулам сложных ставок.

Дисконтный множитель, например, за 6 месяцев, рассчитанный по месячной учетной ставке, имеет вид

Тот же множитель, рассчитанный по квартальной ставке, имеет вид

Этот множитель можно определить и непосредственно через полугодовую учетную ставку d полугод:

1 — d полугод = 1 — d год /2.

Указанные здесь способы расчета одной и той же величины приводят к численно различающимся результатам.

Таким образом, с уравновешенными и относительными учетными ставками дело обстоит так же, как и с соответствующими видами ставки процента. А именно: уравновешивающие учетные ставки дают точный результат, но связаны с довольно громоздкими вычислениями. Относительные учетные ставки проще для расчетов, но дают приближенный результат.

Следует иметь в виду, что при переходе к промежуткам времени меньшей длины (например, от года к месяцу) относительная учетная ставка имеет меньшую величину, чем уравновешенная учетная ставка. Дисконтный множитель по относительной учетной ставке, следовательно, больше, чем дисконтный множитель по уравновешенной учетной ставке.

Таким образом, если установлена номинальная годовая учетная ставка и до окончания срока векселя осталось меньше года, то владельцу векселя выгоднее, чтобы учет проводился по относительной учетной ставке.

При переходе к промежуткам времени большей длины (например, от месяца к году) дело обстоит противоположным образом. Здесь относительная учетная ставка будет больше, чем уравновешенная. Дисконтный множитель, рассчитанный по относительной ставке, будет, соответственно, меньше дисконтного множителя, рассчитанного по уравновешенной ставке. В этом случае владельцу векселя выгоднее, чтобы учет проводился по уравновешенной ставке.

2.6. Дисконтирование по простым и сложным учетным ставкам

2.6.1. Характеристики дисконтирования по простым и сложным учетным ставкам

Дисконтирование суммы при учете по простой учетной ставке определяется формулой

P = S (1 — d t).

Дисконтирование при учете по сложной учетной ставке — формулой

На рис. 2.2 представлены графики зависимости суммы Р, полученной при учете, от срока учета t.

Рис. 2.2. Убывание суммы по простой и сложной учетной ставке

Убывание суммы по простой учетной ставке происходит по закону линейной функции, равномерно. Графиком зависимости суммы от времени (от срока дисконтирования) является прямая.

Убывание суммы по сложной учетной ставке происходит неравномерно, с замедлением. Графиком зависимости суммы от времени является график показательной функции с основанием меньее 1.

Оба графика начинаются в одной точке при t = 0 и пересекаются при t = 1. Если срок дисконтирования равен 0, то, естественно, безразлично, проводить ли дисконтирование по сложной или простой ставке. Точно так же это безразлично и при сроке дисконтирования, равном одному периоду (1 году при годовой ставке). Действительно, при t = 1 по простой и по сложной ставке получаем одинаковые результаты:

P = S (1 — d t) = S (1 — d).

P = S (1 — d) t = S (1 — d).

Во всех остальных случаях дисконтирование по простой и сложной ставке дает различные результаты. При этом, если срок дисконтирования меньше одного периода, то более высокая сумма (и соответственно более низкая величина дисконта) получается по простой ставке. Держателю долгового обязательства при оставшемся сроке, меньшем одного периода (одного года при годовой ставке), выгоднее учитывать обязательство по простой учетной ставке. Если же оставшийся срок больше одного периода, то выгоднее учитывать обязательство по сложной учетной ставке, причем эта выгодность возрастает с ростом срока.

График линейной функции, соответствующий простой ставке, при некотором значении t пересечет ось абсцисс. Это означает, что при данном сроке сумма, получаемая в результате учета обязательства, равна 0, а дисконт равен всей сумме обязательства. Учитывать обязательства при этих условиях не имеет смысла. Тем более не имеет смысла учет при дальнейших значениях t, когда график опускается ниже оси абсцисс.

Реально простую учетную ставку применяют при не слишком больших сроках учета. В отличие от этого сложную учетную ставку можно применять при любых сроках. График показательной функции, соответствующий сложной ставке, никогда не пересечет горизонтальную ось, хотя и будет с ростом времени неограниченно к ней приближаться. Сумма, выдаваемая при учете обязательства на таких условиях, будет неограниченно уменьшаться с ростом срока, но никогда не станет равной 0. Соответственно величина дисконта будет неограниченно приближаться к сумме самого обязательства, но никогда не совпадет с ним.

2.6.2. Связь между простыми и сложными учетными ставками

Эквивалентность учетных ставок связана с эквивалентностью финансовых результатов по этим ставкам за определенный промежуток времени.

Пусть dn и dc — простая и сложная учетные ставки с одним тем же периодом начисления (например, годовые ставки). Эквивалентность ставок за промежуток времени t означает равенство дисконтных множителей, связанных с этим промежутком:

Отсюда получаем формулы расчета простой ставки по эквивалентной ей сложной и расчета сложной ставки по эквивалентной ей простой:

Для учетных ставок, так же как и для процентных, эквивалентность определяется для конкретного промежутка времени.

Ставки, эквивалентные для одного промежутка времени, при изменении длины промежутка времени перестают быть эквивалентными.

Эквивалентные ставки равны друг другу, когда длина рассматриваемого промежутка времени равна периоду начисления, т. е.:

если t = 1, то dn = dc .

Это непосредственно следует из полученных формул. Проведенные ранее рассуждения показывают, что эквивалентные учетные ставки удовлетворяют следующим условиям:

если t < 1, то dn > dc ,

если t > 1, то dn < dc .

2.6.3. Основные соотношения между сложными процентными и учетными ставками

Дисконтирование денежной суммы может проводиться по процентной или по учетной ставке.

При дисконтировании по сложной процентной ставке начальная величина денежной суммы Р определяется по ее конечной величине S, выросшей за время t по процентной ставке i, по формуле

При дисконтировании по сложной учетной ставке d начальная величина денежной суммы определяется по формуле

Процентная и учетная ставка эквивалентны, если они дают один и тот же финансовый результат, т. е. если они по одинаковым конечным суммам S за одно и то же время t дают одинаковые начальные суммы P.

Таким образом, для эквивалентных ставок должно выполняться равенство

Извлекая из обеих частей корень степени t, получаем

Это можно записать следующим образом:

(1 + i) (1 — d) = 1.

Отсюда легко можно выразить процентную ставку через учетную и учетную ставку через процентную:

Важно отметить, что в эти формулы не входит длина промежутка времени t . Следовательно, эквивалентные сложные ставки являются эквивалентными не только для какого-то определенного промежутка времени, а для любого промежутка времени. Напомним, что для простых ставок это не так.

2.6.4. Непрерывное дисконтирование и сила дисконта

Формула дисконтирования по сложной учетной ставке за время t

может применяться не только в дискретном, но и в непрерывном времени. Как и в случае сложного процента, при переходе к непрерывному времени формулу преобразуют так, чтобы при изменении учетной ставки d изменялось не основание показательной функции, а ее показатель. С этой целью вводят величину :

Подлогарифмическое выражение меньше 1, т. е.

ln (1- d) < 0,

и, следовательно, величина b положительна. Из определения получаем

Формула дисконтирования по сложной учетной ставке принимает вид

По аналогии с силой процента величину называют иногда силой дисконта . Полученная формула дисконтирования с участием силы дисконта позволяет вести расчеты в удобной форме для непрерывного времени. Сила дисконта характеризует относительную скорость убывания дисконтируемой суммы.

С ростом учетной ставки растет и соответствующая ей сила дисконта. Связь между этими величинами является не прямой, не прямо пропорциональной, а логарифмической.

С ростом учетной ставки расхождения между численными значениями учетной ставки и силы дисконта постепенно нарастают. Сила дисконта по своей величине выше учетной ставки. Следует, однако, иметь в виду, что соответствующие друг другу величины учетной ставки и силы дисконта задают один и тот же процесс дисконтирования, один и тот же размер уменьшения долговой суммы при учете долгового обязательства

2.7. Параметры расчетов с процентными и учетными ставками

Полученные нами формулы позволяют, исходя из условий договора, рассчитать конечную сумму денег по ее начальной сумме или, наоборот, вычислить начальную сумму по известной конечной сумме. Большую роль в финансовых расчетах играет и другая задача: по известной начальной и конечной сумме определить условия договора. Важнейшими численными характеристиками договора являются продолжительность срока и величина ставки.

2.7.1. Расчет продолжительности срока по процентным ставкам

В соответствии с формулой сложных процентов имеем

Проведя элементарные преобразования и логарифмируя, получаем отсюда:

Эта формула позволяет по заданной начальной и конечной сумме и при известной ставке сложного процента определить продолжительность того срока t, за который начальная сумма Р вырастет до конечной суммы S по ставке сложного процента i. Логарифмы, участвующие в формуле, могут иметь любое основание (но оба логарифма должны иметь одинаковое основание). В частности, можно пользоваться натуральными или десятичными логарифмами.

Предположим теперь, что период начисления раздроблен на m одинаковых промежутков времени и расчеты ведутся по ставке, пересчитанной для этих промежутков. Например, от расчетов по номинальной годовой ставке перешли к расчетам по месячной. Как мы знаем, при этом используют месячную уравновешенную и месячную относительную ставку.

Величина уравновешенной ставки i’ для промежутка времени, составляющего 1/m от периода начисления по ставке i, определяется по формуле

Рост денежной суммы за время t по ставке i’ будет идти в соответствии с формулой

При расчетах на основе силы роста используют формулу

Взяв натуральный логарифм (по основанию e ) от обеих частей формулы после несложных преобразований получим:

Силу роста (ставку непрерывных процентов) α и исходную ставку процента i связывает соотношение

Таким образом, продолжительность срока, рассчитанная по ставке непрерывных процентов, совпадает с продолжительностью, рассчитанной по исходной процентной ставке:

2.7.2. Расчет продолжительности срока по учетным ставкам

В соответствии с формулой дисконтирования по сложной учетной ставке имеем:

После простых преобразований этой формулы получаем:

Эта формула позволяет рассчитать срок дисконтирования по конечной сумме S, сумме учета Р и учетной ставке d. Как и в случае со сложными процентами, логарифмы в расчетах можно брать по любому основанию (по одинаковому в числителе и знаменателе дроби).

Рассмотрим ситуацию, когда период начисления учетной ставки разбит на m одинаковых промежутков равной длины (например, год разбит на месяцы). В таком случае наряду с исходной учетной ставкой d используют уравновешенные и относительные учетные ставки d’, для которых периодами начисления являются эти малые одинаковые промежутки.

Величина уравновешенной учетной ставки d’ для промежутка, составляющего часть от периода начисления по ставке d, определяется по формуле

Дисконтирование денежной суммы за время t по учетной ставке d’ рассчитывается по формуле

Отсюда получаем:

Учетные ставки d и d’ связаны соотношением

Мы получили, что расчет срока дисконтирования t по исходной учетной ставке d и по уравновешенной учетной ставке d’ дает один и тот же результат.

Для относительной ставки дело обстоит не так. Относительная ставка рассчитывается по формуле

Дисконтирование денежной суммы за время t в соответствии с относительной учетной ставкой d’ определяется по формуле

Отсюда получаем:

При увеличении числа промежутков m скорость дисконтирования по относительной учетной ставке уменьшается, а срок дисконтирования растет. С увеличением m этот срок все сильнее расходится со сроком, рассчитанным по исходной и уравновешенной ставке.

В расчетах на основе силы дисконта используют формулу

Из этой формулы получаем:

Поскольку силу дисконта и учетную ставку d связывает соотношение

то продолжительность срока, рассчитанная на основе силы дисконта, и продолжительность, рассчитанная по учетной ставке, совпадают. Действительно,

2.7.3. Расчет величины процентной ставки

Из формулы сложных процентов

следует, что

Последняя формула позволяет по объему начальной суммы Р, конечной суммы S и времени нарастания t определить необходимую величину процентной ставки i.

Предположим, что период начисления разбит на m одинаковых промежутков. Таким промежуткам соответствует своя величина процентной ставки i’.

Величину ставки i’ можно рассчитать двумя разными способами. Первый способ — найти i’ исходя из уже полученной ставки i. Результат здесь будет зависеть от того, является ли эта ставка i’ уравновешенной или относительной. Для уравновешенной ставки расчет следует проводить по формуле

Отсюда, воспользовавшись уже полученной формулой для i, можно вывести следующую формулу:

Для относительной ставки расчет следует вести по формуле

Второй способ — найти величину ставки i’ непосредственно, не прибегая к ставке i, а уже затем по ней определить ставку i.

Формула сложных процентов, выраженная через ставку i’, имеет вид:

Если ставка i’ рассматривается как уравновешенная ставка, то из последней формулы можно получить:

Таким образом, для расчета ставки i получаем прежнюю формулу. Для уравновешенной ставки результаты расчетов по первому и по второму способу совпадают.

Если же ставка i’ рассматривается как относительная ставка, то из формулы ее расчета получаем:

Эта формула расходится с первоначальной формулой для ставки i, дает иной результат.

Таким образом, для относительной ставки важен способ ее вычисления.

Рассмотрим теперь непрерывное начисление процентов на основе силы роста. В этом случае формула нарастания имеет вид

Отсюда получаем расчетную формулу для определения силы роста (непрерывной ставки процента) :

2.7.4. Расчет величины учетной ставки

По формуле дисконтирования,

Отсюда следует, что

Эта формула позволяет вычислить величину учетной ставки d по конечной сумме S, сумме на момент учета Р и срока дисконтирования t.

Пусть период начисления учетной ставки разбит на m одинаковых промежутков. Определим величину ставки d’, соответствующей таким промежуткам. Как и для процентной ставки, здесь возникают два способа расчета. Первый способ — определить величину учетной ставки d’ на основе уже полученной ставки d.

Уравновешенную учетную ставку d’ в этом случае следует рассчитывать по формуле

Это равенство можно продолжить:

что позволяет вычислить величину ставки d’ непосредственно через исходные данные.

Для относительной учетной ставки расчет ведется по формуле

Второй способ основан на том, чтобы найти величину ставки d’, не прибегая к ставке d. Ставку d затем можно рассчитать на основе ставки d’.

Формула дисконтирования по учетной ставке d’ имеет вид

Таким образом, мы еще раз получили ту же формулу, что была выведена для уравновешенной ставки. Следовательно, для уравновешенной ставки оба способа расчета дают одинаковые результаты, как для d, так и для d’.

Для относительной ставки дело обстоит по-иному. Определим ставку d и d’:

Эта формула и формула непосредственного расчета ставки d, приведенная в начале этого параграфа, отличаются друг от друга и приводят к разным результатам.

Таким образом, для относительной учетной ставки, как и для относительной процентной, важен способ ее исчисления.

Перейдем к рассмотрению непрерывного дисконтирования. Формула, использующая силу дисконта, имеет вид

Отсюда силу дисконта (непрерывную ставку учета) можно рассчитать по формуле

Поскольку Р < S , то подлогарифмическое выражение меньше 1, сам логарифм отрицателен, а с учетом знака «минус» числитель дроби положителен. Таким образом, величина непрерывной учетной ставки положительна.

Выводы

Рост по простой процентной ставке определяется линейной функцией, или арифметической прогрессией. Рост по сложной процентной ставке определяется показательной (экспоненциальной) функцией, или геометрической прогрессией.

Таким образом, сложная процентная ставка на длительных промежутках времени выгоднее для вкладчика, чем простая, причем с ростом срока вклада выгодность возрастает.

Напомним основные формулы роста и дисконтирования по сложным ставкам.

Рост по сложной процентной ставке определяется формулой

Дисконтирование по сложной процентной ставке определяется формулой

Дисконтирование по сложной учетной ставке определяется формулой

Формула роста на основе силы роста :

Формула дисконтирования на основе силы дисконта :

Вопросы для самопроверки

  1. В чем причина ограниченности применения простых процентных ставок?
  2. Какова формула роста по сложным процентам?
  3. Какова смешанная формула роста?
  4. Какова формула роста по переменной сложной процентной ставке?
  5. Как определяется величина средней процентной ставки и какова ее расчетная формула?
  6. Какова связь средней процентной ставки и средневзвешенной геометрической величины?
  7. При каких условиях средневзвешенная геометрическая переходит в обычную среднюю геометрическую?
  8. Как связаны друг с другом темп и индекс инфляции?
  9. Как по месячным темпам инфляции рассчитать квартальный и годовой темп?
  10. Как по годовому темпу инфляции рассчитать среднемесячный темп инфляции?
  11. Как по отдельным месячным темпам рассчитать среднемесячный темп инфляции?
  12. В чем различие между уравновешенными и относительными процентными ставками?
  13. Как рассчитываются уравновешенные и относительные процентные ставки?
  14. Какой из двух видов ставок (уравновешенная и относительная) дает точный ответ при использования простых ставок и какой при использования сложных ставок?
  15. Что такое эффективная процентная ставка?
  16. Как рассчитать эффективную ставку?
  17. Как соотносятся друг с другом рост по простым и по сложным процентам?
  18. Изобразите графики роста по простой и по сложной процентной ставке. В каких точках эти графики пересекаются?
  19. Какие процентные ставки (простые или сложные) выгоднее и в каких случаях?
  20. Что характеризует срок удвоения?
  21. Какова формула срока удвоения по простым процентам?
  22. Какова формула срока удвоения по сложным процентам?
  23. Какова формула расчета эквивалентной сложной ставки по заданной простой ставке?
  24. Какова формула расчета эквивалентной простой ставки по заданной сложной ставке?
  25. Что такое сила роста?
  26. Как сила роста связана со сложными процентными ставками?
  27. Как связаны друг с другом рост и дисконтирование?
  28. Какова формула дисконтирования по сложной процентной ставке?
  29. Какова формула дисконтирования с использованием силы роста?
  30. В чем различие между простой и сложной учетной ставкой?
  31. Какова формула дисконтирования по сложной учетной ставке?
  32. Как рассчитываются уравновешенные учетные ставки?
  33. Как рассчитываются относительные учетные ставки?
  34. Как по годовой сложной учетной ставке рассчитать уравновешенную месячную ставку?
  35. Как по годовой сложной учетной ставке рассчитать относительную месячную ставку?
  36. Изобразите графики дисконтирования (убывания) суммы по простой и по сложной процентной ставке. В каких точках эти графики пересекаются?
  37. Какие учетные ставки (простые или сложные) выгоднее и в каких случаях?
  38. Как примеенние учетных ставок связано с расматриваемыми сроками?
  39. Какова формула расчета эквивалентной сложной учетной ставки по заданной простой учетной ставке?
  40. Какова формула расчета эквивалентной простой учетной ставки по заданной сложной учетной ставке?
  41. Как связаны друг с другом сложные процентные и учетные ставки?
  42. Зависит ли эквивалентная ставка от срока? Что означает наличие или отсутствие такой зависимости?
  43. Что такое сила дисконта?
  44. Как сила дисконта связана со сложными учетными ставками?
  45. Как рассчитать продолжительность срока по сложной процентной ставке?
  46. Как продолжительность срока связана с уравновешенной процентной ставкой?
  47. Как продолжительность срока связана с относительной процентной ставкой?
  48. Как продолжительность срока связана с силой роста?
  49. Как рассчитать продолжительность срока по сложной учетной ставке?
  50. Как продолжительность срока связана с уравновешенной учетной ставкой?
  51. Как продолжительность срока связана с относительной учетной ставкой?
  52. Как продолжительность срока связана с силой дисконта?
  53. Какова формула расчета:
    • сложной процентной ставки?
    • силы роста?
    • сложной учетной ставки?
    • силы дисконта?

Библиография

  1. Бригхем Ю., Гапенски Л. Финансовый менеджмент: В 2 т. СПб., 1997.
  2. Капитоненко В. В. Финансовая математика и ее приложения. М., 1998.
  3. Кутуков В. Б. Основы финансовой и страховой математики. Методы расчета кредитных, инвестиционных, пенсионных и страховых схем. М., 1998.
  4. Лукасевич И. Я. Анализ финансовых операций. Методы, модели, техника вычислений. М., 1998.
  5. Малыхин В. И. Финансовая математика. М., 1999.
  6. Уотшем Т. Дж., Паррамоу К. Количественные методы в финансах. М., 1999.
  7. Чернов В. П. Математика для топ-менеджеров. СПб., 2002.
  8. Чернов В. П. Математические методы финансового анализа. СПб., 2005
  9. Четыркин Е. М. Финансовый анализ производственных инвестиций. М., 1998.
  10. Четыркин Е. М. Финансовая математика. М., 2000.

И расчет параметров этой сделки.

Курс финансовой математики состоит из двух разделов: разовые платежи и потоки платежей. Разовые платежи — это финансовые сделки, при которых каждая сторона, при реализации условий контракта выплачивает сумму денег только один раз (либо дает в долг, либо отдает долг). Потоки платежей — это финансовые сделки, при которых каждая сторона при реализации условий контракта производит не менее одного платежа.

В финансовой сделке участвуют две стороны — кредитор и заемщик. Каждой стороной может быть как банк, так и клиент. Основная финансовая сделка — предоставление некоторой суммы денег в долг. Деньги не равносильны относительно времени. Современные деньги, как правило, ценнее будущих. Ценность денег во времени отражается в величине начисляемых процентных денег и схеме их начисления и выплаты.

Математическим аппаратом для решения таких задач является понятие "процентов" и и .

Проценты — основные понятия

Процент — одна сотая от заранее оговоренной базы (то есть база соответствует 100%).

Примеры:

Ответ: больше на

первоначальная сумма долга
(дни) фиксированный промежуток времени, к которому приурочена процентная (учетная) ставка (как правило, один год — 365, иногда 360 дней)
процентная (учетная) ставка за период
срок долга в днях
срок долга в долях от периода
сумма долга в конце срока

Процентная ставка

Процентная ставка — относительная величина дохода за фиксированный отрезок времени. Отношение дохода (процентных денег — абсолютная величина дохода от представления денег в долг) к сумме долга.

Период начисления — это временной интервал, к которому приурочена процентная ставка, его не следует путать со сроком начиления. Обычно в качестве такого периода принимаю год, полугодие, квартал, месяц, но чаще всего дело имеют с годовыми ставками.

Капитализация процентов — присоединение процентов к основной сумме долга.

Наращение — процесс увеличения суммы денег во времени в связи с присоединением процентов.

Дисконтирование — обратно наращению, при котором сумма денег, относящаяся к будущему уменьшается на величину соответствующую дисконту (скидке).

Величина называется множителем наращения, а величина — множителем дисконтирования при соответствующих схемах.

Интерпретация процентной ставки

При схеме "простых процентов " исходной базой для начисления процентов в течение всего срока долга на каждом периоде применения процентной ставки является первоначальная сумма долга .

При схеме "сложных процентов " (для целых ) исходной базой для начисления процентов в течение всего срока на каждом периоде применения процентной ставки является наращенная за предыдущий период сумма долга.

Присоединение начисленных процентных денег к сумме, которая служит базой для их вычисления, называется капитализацией процентов (или реинвестированием вклада). При применении схемы "сложных процентов" капитализация процентов происходит на каждом периоде .

Интерпретация учетной ставки

При схеме "простых процентов" (простой дисконт ) — исходной базой для начисления процентов в течение всего срока долга на каждом периоде применения учетной ставки является сумма , подлежащая выплате в конце срока вклада.

При схеме "сложных процентов" (для целых ) (сложный дисконт ) — исходной базой для начисления процентов в течение всего срока на каждом периоде применения учетной ставки является сумма долга в конце каждого периода.

Простая и сложная процентные ставки

"Прямые" формулы

Простые проценты Сложные проценты
— процентная ставка наращение
— процентная ставка
дисконтирование (банковский учет)

"Обратные" формулы

Простые проценты Сложные проценты
— процентная ставка дисконтирование (математический учет)
— процентная ставка наращение

Переменная процентная ставка и реинвестирование вкладов

Пусть срок долга имеет этапов, длина которых равна , ,

— при схеме простых процентов

1 . В контракте предусмотрено начисление а) простого, б) сложного процента в таком порядке: в первом полугодии по годовой процентной ставке 0,09, потом в следующем году ставка уменьшилась на 0,01, а в следующих двух полугодиях увеличилась на 0,005 в каждом из них. Найти величину наращенного вклада в конце срока, если величина первоначального вклада равна $800.

Рыночная процентная ставка как важнейший макроэкономический показатель

Важным выступает процентная ставка. Процентная ставка — это плата за деньги, предоставляемые в . Были времена, когда законом не допускалось вознаграждение за то, что неизрасходованные, заемные деньги давали в заем. В современном мире широко пользуются кредитами, за пользование которыми устанавливается процент. Поскольку процентные ставки измеряют издержки использования денежных средств предпринимателями и вознаграждение за неиспользование денег потребительским сектором, то уровень процентных ставок играет значительную роль в экономике страны в целом.

Очень часто в экономической литературе пользуются термином "процентная ставка", хотя существует множество процентных ставок. Дифференциация процентных ставок связана с риском, на который идет заимодатель. Риск возрастает с увеличением срока кредита, так как становится выше вероятность того, что деньги могут потребоваться кредитору раньше установленной даты возврата ссуды, соответственно повышается процентная ставка. Она увеличивается, когда за кредитом обращается малоизвестный предприниматель. Мелкая фирма уплачивает более высокую процентную ставку, чем крупная. Для потребителей процентные ставки также варьируются.

Однако как бы ни отличались ставки процента, все они находятся под воздействием : если предложение денег уменьшается, то процентные ставки увеличиваются, и наоборот. Именно поэтому рассмотрение всех процентных ставок можно свести к изучению закономерностей одной процентной ставки и в дальнейшем оперировать термином "процентная ставка"

Различают номинальные и реальные процентные ставки

Реальная процентная ставка определяется с учетом уровня . Она равна номинальной процентной ставке, которая устанавливается под воздействием спроса и предложения, за вычетом уровня инфляции:

Если, например, банк предоставляет кредит и взимает при этом 15%, а уровень инфляции составляет 10%, то реальная процентная ставка равна 5% (15% — 10%).

Способы начисления процентов:

Простая процентная ставка

График роста по простым процентам

Пример

Определить проценты и сумму накопленного долга если ставка по простым процентам 20% годовых, ссуда равна 700 000 руб., срок 4 года.

  • I = 700 000 * 4 * 0,2 = 560 000 руб.
  • S = 700 000 + 560 000 = 1 260 000 руб.

Ситуация, когда срок ссуды меньше периода начисления

Временная база может быть равна:
  • 360 дней. В в этом случае получают обыкновенные или коммерческие проценты .
  • 365 или 366 дней. Используется для расчета точных процентов .
Число дней ссуды
  • Точное число дней ссуды — определяется путем подсчета числа дней между датой ссуды и датой ее погашения. День выдачи и день погашения считаются за один день. Точное число дней между двумя датами можно определить по таблице порядковых номеров дней в году.
  • Приближенное число дней ссуды — определяется из условия, согласно которому любой месяц принимается равным 30 дням.
На практике применяются три варианта расчета простых процентов:
  • Точные проценты с точным числом дней ссуды (365/365)
  • Обыкновенные проценты с точным числом дней ссуды (банковский; 365/360). При числе дней ссуды, превышающем 360, данный способ приводит к тому, что сумма начисленных процентов будет больше, чем предусматривается годовой ставкой.
  • Обыкновенные проценты с приближенным числом дней ссуды (360/360). Применяется в промежуточных рассчетах, так как не сильно точный.

Пример

Ссуда в размере 1 млн.рублей выдана 20 января до 5 октября включительно под 18% годовых. Какую сумму должен заплатить должник в конце срока при начислении простых процентов? Рассчитать в трех вариантах подсчета простых процентов.

Для начала определим число дней ссуды: 20 января это 20 день в году, 5 октября — 278 день в году. 278 — 20 = 258. При приближенном подсчете — 255. 30 января — 20 января = 10. 8 месяц умножить на 30 дней = 240. итого: 240 + 10 + 5 = 255.

1. Точные проценты с точным числом дней ссуды (365/365)

  • S = 1 000 000 * (1 + (258/365)*0.18) = 1 127 233 руб.

2. Обыкновенные проценты с точным числом дней ссуды (360/365)

  • S = 1 000 000 * (1 + (258/360)*0.18 = 1 129 000 руб.

3. Обыкновенные проценты с приближенным числом дней ссуды (360/360)

  • S = 1 000 000 (1 + (255/360)*0.18 = 1 127 500 руб.

Переменные ставки

В кредитных соглашениях иногда предусматриваются изменяющиеся во времени процентные ставки. Если это простые ставки, то наращенная на конец срока сумма определяется следующим образом.

Новое на сайте

>

Самое популярное