Домой Проценты по кредитам Проценты начисляются два раза. Начисление процентов. Расчет наращенной стоимости

Проценты начисляются два раза. Начисление процентов. Расчет наращенной стоимости

НАЧИСЛЕНИЕ СЛОЖНЫХ ПРОЦЕНТОВ

Раздел II. Начисление сложных процентов

2.1 Сложные проценты

Сложные проценты применяются в долгосрочных финансово-кредитных операциях, если проценты не выплачиваются периодически сразу после их начисления за прошедший интервал времени, а присоединяются к сумме долга. Присоединение начисленных процентов к сумме, которая служила базой для их определения, часто называютка-

питализацией процентов.

Формула наращения по сложным процентам

Пусть первоначальная сумма долга равна P , тогда через один год сумма долга с присоединенными процентами составитP(1+i) , через 2 годаP(1+i)(1+i)=P(1+i) 2 , черезn лет -P(1+i) n . Таким образом, получаем формулу наращения для сложных процентов

S=P(1+i)n

где S - наращенная сумма,i - годовая ставка сложных процентов,n - срок ссуды,(1+i) n - множитель наращения.

В практических расчетах в основном применяют дискретные проценты, т.е. проценты, начисляемые за одинаковые интервалы времени (год, полугодие, квартал и т.д.). Наращение по сложным процентам представляет собой рост по закону геометрической прогрессии, первый член которой равен P , а знаменатель(1+i).

Отметим, что при сроке n<1 наращение по простым процентам дает больший результат, чем по сложным, а приn>1 - наоборот. В этом нетрудно убедиться на конкретных числовых примерах. Наибольшее превышение суммы, наращенной по простым процентам, над суммой, наращенной по сложным процентам, (при одинаковых процентных ставках) достигается в средней части периода.

Формула наращения по сложным процентам, когда ставка меняется во времени

В том случае, когда ставка сложных процентов меняется во времени, формула наращения имеет следующий вид

S = P(1 + i) n 1

(1+ i )n 2

...(1+ i )nk ,

где i1 , i2 ,..., ik - последовательные значения ставок процентов, действующих в периоды n1, n2,..., nk соответственно.

В договоре зафиксирована переменная ставка сложных процентов, определяемая как 20% годовых плюс маржа 10% в первые два года, 8% в третий год, 5% в четвертый год. Определить величину множителя наращения за 4 года.

(1+0,3)2 (1+0,28)(1+0,25)=2,704

НАЧИСЛЕНИЕ СЛОЖНЫХ ПРОЦЕНТОВ

Формула удвоения суммы

В целях оценки своих перспектив кредитор или должник может задаться вопросом: через сколько лет сумма ссуды возрастет в N раз при данной процентной ставке. Обычно это требуется при прогнозировании своих инвестиционных возможностей в будущем. Ответ получим, приравняв множитель наращения величинеN :

а) для простых процентов

(1+niпрост. ) = N, откуда

N − 1

пр ост.

б) для сложных процентов

(1+iсложн. )n = N, откуда

Особенно часто используется N =2. Тогда формулы (21) и (22) называются формулами удвоения и принимают следующий вид:

а) для простых процентов

б) для сложных процентов

Если формулу (23) легко применять для прикидочных расчетов, то формула (24) требует применения калькулятора. Однако при небольших ставках процентов (скажем, менее 10%) вместо нее можно использовать более простую приближенную. Ее легко получить, если учесть, что ln 2 0,7, а ln(1+i) i. Тогда

n ≈ 0,7/i .

а) При простых процентах:

пр ост.

НАЧИСЛЕНИЕ СЛОЖНЫХ ПРОЦЕНТОВ

б) При сложных процентах и точной формуле:

ln(1+ 01,)

слож н.

в) При сложных процентах и приближенной формуле: n ≈ 0,7/i = 0,7/0,1 =7 лет.

1) Одинаковое значение ставок простых и сложных процентов приводит к совершенно различным результатам.

2) При малых значениях ставки сложных процентов точная и приближенная формулы дают практически одинаковые результаты.

Начисление годовых процентов при дробном числе лет

При дробном числе лет проценты начисляются разными способами: 1) По формуле сложных процентов

S=P(1+i)n ,

На основе смешанного метода, согласно которому за целое число лет начисляются

сложные проценты, а за дробное - простые

S=P(1+i)a (1+bi),

где n=a+b, a -целое число лет, b -дробная часть года.

В ряде коммерческих банков применяется правило, в соответствии с которым за отрез-

ки времени меньше периода начисления проценты не начисляются, т.е.

S=P(1+i)a .

Номинальная и эффективная ставки процентов

Номинальная ставка . Пусть годовая ставка сложных процентов равнаj , а число периодов начисления в годуm . Тогда каждый раз проценты начисляют по ставке j/m. Ставкаj называется номинальной. Начисление процентов по номинальной ставке производится по формуле:

где N/ τ - число (возможно дробное) периодов начисления процентов,τ - период начисления процентов,


НАЧИСЛЕНИЕ СЛОЖНЫХ ПРОЦЕНТОВ

2) По смешанной формуле

S = P(1 +

)a (1+ b

где a - целое число периодов начисления (т.е.a= - целая часть от деления всего срока ссудыN на период начисленияτ ),

b - оставшаяся дробная часть периода начисления (b=N/ τ -a).

Размер ссуды 20 млн. руб. Предоставлена на 28 месяцев. Номинальная ставка равна 60% годовых. Начисление процентов ежеквартальное. Вычислить наращенную сумму в трех ситуациях: 1) когда на дробную часть начисляются сложные проценты, 2) когда на дробную часть начисляются простые проценты 3) когда дробная часть игнорируется. Результаты сравнить.

Начисление процентов ежеквартальное. Всего имеется 3 = 91 3 кварталов.

S = 20(1+ 06, / 4)9

73,713 млн. руб.

S = 20(1+

73,875 млн. руб.

3) S=20(1+0,6/4) 9 = 70,358 млн. руб.

Из сопоставления наращенных сумм видим, что наибольшего значения она достигает во втором случае, т.е. при начислении на дробную часть простых процентов.

Эффективная ставка показывает, какая годовая ставка сложных процентов дает тот же финансовый результат, что иm -разовое наращение в год по ставкеj/m.

Если проценты капитализируются m раз в год, каждый раз со ставкойj/m , то, по определению, можно записать равенство для соответствующих множителей наращения:

(1+iэ )n =(1+j/m)mn ,

где i э - эффективная ставка, аj - номинальная. Отсюда получаем, что связь между эффективной и номинальной ставками выражается соотношением

i э =(1 +

−1

Обратная зависимость имеет вид

j=m[(1+iэ )1/m -1].

Вычислить эффективную ставку процента, если банк начисляет проценты ежеквартально, исходя из номинальной ставки 10% годовых.


НАЧИСЛЕНИЕ СЛОЖНЫХ ПРОЦЕНТОВ

Решение i э =(1+0,1/4) 4 -1=0,1038, т.е. 10,38%.

Пример 10.

Определить какой должна быть номинальная ставка при ежеквартальном начислении процентов, чтобы обеспечить эффективную ставку 12% годовых.

Решение. j =4[(1+0,12) 1/4 -1]=0,11495, т.е. 11,495%.

Учет (дисконтирование) по сложной ставке процентов

Здесь, также как и в случае простых процентов, будут рассмотрены два вида учета - математический и банковский.

Математический учет . В этом случае решается задача обратная наращению по сложным процентам. Запишем исходную формулу для наращения

S=P(1+i)n

и решим ее относительно P

P = S(1 + 1 i ) n = Svn ,

v n =(1 + 1 i ) n =(1 +i ) − n

учетный или дисконтный множитель.

Если проценты начисляются m раз в году, то получим

P = S

(1+ j /m )mn

гдеP и S эквивалентны в том смысле, что платеж в сумме S через n лет равноценен сумме P , выплачиваемой в настоящий момент.

Разность D=S-P называютдисконтом .

Банковский учет . В этом случае предполагается использование сложной учетной ставки. Дисконтирование по сложной учетной ставке осуществляется по формуле

P=S(1-dсл )n , (39)

где d сл - сложная годовая учетная ставка.

Дисконт в этом случае равен

D=S-P=S-S(1-dсл )n =S. (40)

НАЧИСЛЕНИЕ СЛОЖНЫХ ПРОЦЕНТОВ

При использовании сложной учетной ставки процесс дисконтирования происходит с прогрессирующим замедлением, так как учетная ставка каждый раз применяется к сумме, уменьшенной за предыдущий период на величину дисконта.

Номинальная и эффективная учетные ставки процентов

Номинальная учетная ставка . В тех случаях, когда дисконтирование применяютm раз в году, используютноминальную учетную ставку f. Тогда в каждом периоде, равном1/m части года, дисконтирование осуществляется по сложной учетной ставкеf/m . Процесс дисконтирования по этой сложной учетнойm раз в году описывается формулой

P=S(1-f/m)N ,

где N - общее число периодов дисконтирования (N=mn ).

Дисконтирование не один, а m раз в году быстрее снижает величину дисконта.

Эффективная учетная ставка . Под эффективной учетной ставкой понимают сложную годовую учетную ставку, эквивалентную (по финансовым результатам) номинальной, применяемой при заданном числе дисконтирований в годуm .

В соответствии с определением эффективной учетной ставки найдем ее связь с номинальной из равенства дисконтных множителей

Отметим, что эффективная учетная ставка всегда меньше номинальной.

Наращение по сложной учетной ставке. Наращение является обратной задачей для учетных ставок. Формулы наращения по сложным учетным ставкам можно получить, разрешая соответствующие формулы для дисконтирования (39 и 41) относительноS . Получаем из P=S(1-d сл ) n

S = P

(1− d сл )n

а из P=S(1-f/m)N

S = P

(1− f /m )N

Пример 11.

Какую сумму следует проставить в векселе, если реально выданная сумма равна 20 млн. руб., срок погашения 2 года. Вексель рассчитывается, исходя из сложной годовой учетной ставки 10%.

S = (1 − 20 0,1) 2 = 24,691358 млн. руб.

Задачи на сложные проценты решаются в достаточно быстрый способ при знании нескольких простых формул. Часть из них касается начислений по вкладу или кредиту, когда те осуществляются через определенные промежутки временни. Также сложные проценты используют в задачах химии, медицины и ряде других.

ФОРМУЛЫ СЛОЖНЫХ ПРОЦЕНТОВ

В случае размещения вкладов с капитализацией процентов на годы конечная сумма депозита определяется формулой
Здесь P – первоначальный взнос, r – процентная ставка, n – количество лет. По сложным процентам работают банки, инвестиционные фонды, страховые компании. Распространенные за рубежом, а теперь и в Украине - пенсионные фонды и фонды страхования жизни работают по схеме сложных процентов.
При размещении вкладов с капитализацией процентов ежеквартально формула сложных процентов будет выглядеть
где q – количество полных кварталов.
При капитализации процентов ежемесячно применяют следующую формулу для вычислений
где s – количество месяцев существования соглашения.
Последний случай, непрерывное начисление процентов, когда сложные проценты начисляются ежедневно, рассчитывают по формуле
где m – количество дней.
Страхование жизни и откладывания пенсий исчисляют сложными формулами, кроме начисления сложных процентов ежегодно осуществляются необходимые взносы.
Рассмотрим два случая накопления. Мужчина откладывает 5000 грн. в течение 20 лет. За это время он отложит
20*5000=100000 (грн).
При откладывании в накопительные фонды с годовой ставкой 13%, за первый год сумма возрастет до
5000*(1+13/100)=5650 (грн) .
В следующем году человек в данной суммы добавляет еще 5000 грн. В результате, за второй год сумма увеличится
(5650+5000)*(1+0,13)=12034.50 (грн) .
Продолжая подобные вычисления, в конце срока получим сумму размером 457349,58 грн.
Поверьте - ошибок при исчислении форуме, большое значение набегает за счет сложных процентов. Сомнительным остается только история изменения платежеспособности гривны через 20 лет. Учитывая политику государства вкладывать деньги в такие фонды люди не спешат, однако за рубежом практика откладывания денег распространена, правда процентные ставки намного ниже.

Рассмотрим распространенные задачи на сложные проценты.

Пример 1. Вкладчик положил на депозит $ 3000 под 9% годовых на 10 лет. Какая сумма аккумулируется конце 10-го года при годовой капитализации? На сколько вырастет сумма по сравнению с первоначальным взносом?

Решение: Применяем формулу сложных процентов для нахождения суммы в конце срока

Чтобы ответить на второй вопрос, от значения 7102,09 вычитаем сумму вклада.

Разница составляет 4102 доллара.

Пример 2. Инвестор вложил 7000 грн под 10% годовых при условии начисления сложных процентов ежеквартально. Какую сумму он получит через 8 лет?

Решение: Применяем 2 формулу сложных процентов. Находим количество кварталов
8*4=32.
и подставляем в формулу

Школьные задачи на сложные проценты

Например, возьмем задачи из учебника для 9 класса авторов А.Г. Мерзляк, В.Б. Полонский, М.С. Якир «Аглгебра». (Номер в скобках)

Задача 1. (556) Костюм стоил 600 грн. После того как цена была снижена дважды, он стал стоить 432 грн., Причем процент снижения второй был в 2 раза больше, чем в первый раз. На сколько процентов каждый раз снижалась цена?

Решение: Для упрощения вычислений обозначим
X – первая скидка;
X/2 – вторая скидка.
Для вычисления неизвестной X составляем уравнение

Упрощаем, и сводим к квадратному уравнению

и решаем


Первый решение не имеет физического смысла, второй учитываем при вычислениях. Значение 0,2 соответствует снижению на 0,2*100%=20% после первой скидки, и X/2 =10% после второй скидки.

Задача 2. (557) Определенный товар стоил 200 грн. Сначала его цену повысили на несколько процентов, а затем снизили на столько же процентов, после чего стоимость его стала 192 грн. На сколько процентов каждый раз происходила смена цены товара?

Решение: Поскольку проценты одинаковы, то обозначаем изменении цены товара через X .
На основе условия задачи получим уравнение

Его упрощение приведет к решению уравнения

откуда корни приобретут значений

Первая значение отвергаем, оно меняет суть задачи (сначала имеем снижение, а затем рост процентов, противоречит условию). Второе при пересчете составит 0,2*100%=20% процентов.

Задача 3. (558) Вкладчик положил в банк 4000 грн. За первый год ему начислена определенный процент годовых, а второго года банковский процент увеличен на 4%. На конец второго года на счете стало 4664 грн. Сколько процентов составила банковская ставка в первый год?

Решение: Обозначим через X – увеличение вклада в первый год, тогда
X+4/100%=X+0,04
начисления во второй год.
По условию задачи составляем уравнение для определения неизвестной X

После упрощений получим квадратное уравнение вида

Вычисляем дискриминант

Первый корень отбрасываем, второй соответствует ставке в 6% годовых.

Задача 4. (564) В сосуде 12 кг кислоты. Часть кислоты отлили и долили до прежнего уровня водой. Затем снова отлили столько же, как и в первый раз, и долили водой до прежнего уровня. Сколько литров жидкости отливали каждый раз, если в результате получили 25-процентный раствор кислоты?

Решение: Обозначим через X – часть кислоты, которую отливали.
После первого раза ее осталось 12-X, а процентное содержание кислоты

После второй попытки содержание кислоты в сосуде составило
.
Разведя водой до 12 кг, процентное содержание составляло 25%. Составляем уравнение

Упрощаем проценты и избавляемся знаменателей


Решаем квадратное уравнение


Условии задачи удовлетворяет второе решение, а это значит, что каждый раз отливали 6 кг жидкости.

На этом знакомство со сложными процентами завершается. На практике Вам встретятся как простые так и сложные задачи. При проблемах с вычисления сложных процентов обращайтесь к нам, мы поможем Вам в решении задач.

Большинство хозяйственных операций (приобретение основных средств, покупка/продажа ценных бумаг, лизинг, получение/погашение банковских кредитов, анализ инвестиционных проектов и др.) порождают денежные потоки. Осуществление этих операций сопровождается множеством выплат и поступлений денежных средств, образуя денежный поток, распределенный во времени.

В связи с этим в процессе управления финансами предприятия возникает необходимость в проведении специальных расчетов, связанных с движением денежных потоков в различные периоды времени. Ключевую роль в этих расчетах играет оценка стоимости денег во времени. Концепция такой оценки базируется на том, что стоимость денег с течением времени изменяется с учетом нормы прибыли, сложившейся на финансовом рынке, в качестве которой выступает ставка ссудного процента или норма доходности по государственным ценным бумагам.

Из принципа временной стоимости денег (Time Value of Money, TVM) вытекает два важных следствия:

  • необходимость учета фактора времени, в особенности при проведении долгосрочных финансовых операций;

Рассмотрим отдельные элементы методического инструментария стоимости денег.

Процент — сумма дохода от предоставления капитала в долг или плата за пользование ссудным капиталом во всех его формах (депозитный и кредитный процент, по облигациям и векселям).

Простой процент — сумма дохода, начисляемого к основной сумме капитала в каждом интервале, по которой дальнейшие расчеты не производят.

Сложный процент — сумма дохода, начисляемого в каждом интервале, которую не выплачивают, а присоединяют к основной сумме капитала (вклада) в последующем платежном периоде.

Процентная ставка удельный показатель, в соответствии с которым в установленные сроки выплачивают сумму процентов в расчете на единицу капитала (вклада). На практике процентная ставка выражает соотношение годовой суммы процентного дохода к объему основного долга.

Будущая стоимость денег (Future Value, FV) — сумма вложенных в настоящий момент денежных средств, в которую они превратятся через определенный период времени с учетом выбранной процентной ставки.

Настоящая стоимость денег (Present Value, PV) — сумма будущих денежных средств (вклада), приведенных с учетом конкретной процентной ставки к настоящему моменту времени.

Наращение стоимости (компаундинг — compounding) — процесс пересчета настоящей стоимости денежных средств (вклада) в их будущую стоимость в конкретном периоде времени путем добавления к первоначальной сумме начисленной величины процента.

Дисконтирование стоимости (discounting) — процесс приведения будущей стоимости денежных средств (вклада) к их настоящей стоимости путем исключения из будущей суммы соответствующей величины процента (дисконта). Посредством такой финансовой операции достигают сопоставимости текущей стоимости предстоящих денежных потоков.

Период начисления — общий период времени, в течение которого осуществляют процесс наращения или дисконтирования денежной суммы (вклада).

Интервал начисления - это минимальный период, по прошествии которого происходит начисление процентов.

Декурсивный способ начисления процентов — способ, при котором проценты начисляются в конце каждого интервала начисления. Их величина определяется исходя из величины предоставляемого капитала. Соответственно, декурсивная процентная ставка представляет собой выраженное в процентах отношение суммы начисленного за определенный интервал дохода к сумме, имеющейся на начало данного интервала.

Антисипативный способ (предварительный) начисления процентов — это способ, при котором проценты начисляются в начале каждого интервала начисления. Сумма процентных денег определяется исходя из наращенной суммы. Процентной ставкой будет выраженное в процентах отношение суммы дохода, выплачиваемого за определенный интервал, к величине наращенной суммы, полученной по прошествии этого интервала. Определяемая таким способом процентная ставка называется учетной ставкой, или антисипативным процентом.

Наращение по простым процентам

Простые проценты используются в краткосрочных финансовых операциях, срок проведения которых меньше года или равен ему.

Наращение по годовой ставке простых процентов осуществляется по формуле:

FV = PV(1 + r × n), (1)

где FV — будущая стоимость;

PV — первоначальная стоимость;

n — число периодов (лет);

r — процентная ставка.

Пример 1

Клиент сделал вклад в банк в сумме 10 000 руб. под 12 % годовых сроком на пять лет. По формуле (1) находим:

FV = 10 000(1 + 0,12 × 5) = 16 000 руб.

Сумма начисленных процентов составит 6000 руб. (16 000 - 10 000).

Если продолжительность краткосрочной операции выражена в днях, то срок ее проведения корректируется следующим образом:

где t — число дней проведения операции;

В — временная база (число календарных дней в году).

Тогда будущую стоимость операции можно определить:

Время вклада (ссуды) может вычисляться или с учетом точного числа в месяцах, или при допущении, что расчетная продолжительность любого месяца равна 30 дням.

В результате конкретные расчеты по начислению процентов могут вестись по трем вариантам:

365/365 — точное число дней проведения операции и фактическое число дней в году (точные проценты);

365/360 — точное число дней проведения операции и финансовый год (12 месяцев по 30 дней);

360/360 — приближенное число дней проведения операции (месяц принимается равным 30 дням) и финансовый год (обыкновенные проценты).

Для одних и тех же условий начисления процентов проведение расчетов по этим вариантам приводит к несколько отличающимся финансовым последствиям.

Пример 2

Акционерное общество получило в банке ссуду в размере 200 тыс. руб. под 15% годовых на срок с 15 февраля до 15 апреля. Определить сумму, которую необходимо возвратить банку.

Сначала нужно определить число дней использования ссуды: 15 февраля - 46-й день в году, 15 апреля - 105-й день в году. Отсюда точный срок ссуды - 59 дней. Тогда, по формуле (3) находим:

Дисконтирование по простым процентам

Существует два способа дисконтирования.

Математическое дисконтирование — способ, основанный на решении задачи, обратной определению будущей стоимости. При проведении расчетов здесь используется процентная ставка.

С учетом принятых ранее обозначений формула дисконтирования по ставке r будет иметь вид:

(4)

Доход банка (FV - PV) называют дисконтом, а используемую норму приведения r — декурсивной ставкой процентов.

Пример 3

Какую цену заплатит инвестор за бескупонную облигацию, номинальная стоимость которой 500 тыс. руб., а срок погашения — 270 дней, если требуемая норма доходности — 20 %?

По формуле (4) при использовании обыкновенных процентов:

PV = 500 / (1 + 0,2 × 270 / 360) = 434,78 тыс. руб.;

точных процентов:

PV = 500 / (1 + 0,2 × 270 / 365) = 435,56 тыс. руб.

Банковское дисконтирование применяется при банковском учете векселей, при этом проценты начисляются на сумму, подлежащую уплате в конце срока операции. При проведении расчетов используется учетная ставка d:

(5)

При дисконтировании по учетной ставке чаще всего используют временную базу 360/360 или 360/365. Используемую при этом норму приведения d называют антисипативной ставкой процентов.

Пример 4

Простой вексель на сумму 500 тыс. руб. со сроком погашения один год учитывается в банке через 270 дней по простой учетной ставке 20 %. Какую сумму получит владелец векселя?

Используем формулу (5), учитывая, что n — это разность во времени между моментом учета и сроком погашения векселя:

PV = 500 (1 - 0,2 × 90 / 360) = 475 тыс. руб.

Применение двух рассмотренных методов дисконтирования к одной и той же сумме приводит к разным результатам, даже при r = d. Учетная ставка дает более быстрое снижение суммы, чем обычная.

Пример 5

Простой вексель на сумму 100 тыс. руб. с оплатой через 90 дней учитывается в банке немедленно после получения. Необходимо определить сумму, полученную владельцем векселя при процентной/учетной ставке 15 %.

При использовании процентной ставки по формуле (4):

PV = 100 / (1 + 0,15 × 90 / 360) = 96,39 тыс. руб.

При использовании учетной ставки по формуле (5):

PV = 100 (1 - 0,15 × 90 / 360) = 96,25 тыс. руб.

Учетная ставка d применяется и для наращения по простым процентам (например, при определении будущей суммы контракта):

(6)

Изменим условия примера 5 следующим образом.

Пример 6

На какую сумму должен быть выписан вексель, чтобы поставщик, проведя операцию учета, получил стоимость товаров (100 тыс. руб.) в полном объеме, если учетная ставка — 15 %?

По формуле (6) определяем будущую стоимость (номинал) векселя:

FV = 100 / (1 - 0,15 × 90 / 360) = 103,896 тыс. руб.

Величина процентной ставки r или учетной ставки d может быть определена из соотношений (1) и (5):

(7)

(8)

Пример 7

Краткосрочное обязательство со сроком погашения 90 дней было приобретено по цене 98,22 ед. от номинала. Необходимо определить доходность операции для инвестора.

Она составляет (с использованием обыкновенных процентов):

Срок операции в днях определяется следующим образом:

Пример 8

Необходимо определить срок владения обязательством стоимостью 98,22 ед., погашаемого по номиналу, если требуемая норма доходности 7,2 %.

Эквивалентность процентных ставок r и d

Эквивалентные процентные ставки — это такие ставки разного вида, применение которых при одинаковых начальных условиях дает одинаковые финансовые результаты.

Эквивалентные процентные ставки необходимо знать в случаях, когда существует возможность выбора условий финансовой операции и требуется инструмент для корректного сравнения различных процентных ставок.

Вывод формул эквивалентности базируется на равенстве соответствующих множителей наращения:

1 + n × r = (1 - n × d) - 1. (11)

С учетом формулы (11) для операций с продолжительностью менее года соотношения эквивалентности примут вид:

  • временная база одинакова и равна В (360 или 365 дней):
  • временная база ставки r равна 365 дням, а d — 360 дням:

Пример 9

Срок уплаты по векселю — 250 дней. При этом ставка простых процентов измеряется при временной базе 365 дней, а простая учетная ставка — при временной базе 360 дней. Какова будет доходность, измеренная в виде ставки простых процентов, учета векселя по простой учетной ставке 10 %?

Используя формулу (14) для r при заданных временных базах, получим:

r = 365 × 0,1 / (360 - 250 × 0,1) = 0,1089, или 10,89 %.

Допустим, что настоящая стоимость векселя — 100 000 руб. Тогда его номинальная стоимость по формуле (3) составит:

Наращение по сложным процентам

Сложные проценты применяются, как правило, в финансовых операциях, срок проведения которых более года. При этом базой исчисления процентов является как исходная сумма финансовой операции, так и сумма уже накопленных к этому времени процентов.

Наращение по сложным процентам имеет вид:

FV n = PV (1 + r) n . (16)

Наращение по сложным процентам подразумевает реинвестирование полученных доходов или капитализацию.

Начисление сложных процентов может осуществляться не один, а несколько раз в году. В этом случае оговаривается номинальная ставка процентов j — годовая ставка, по которой определяется величина ставки процентов, применяемая на каждом интервале начисления.

При m равных интервалах начисления и номинальной процентной ставке j эта величина считается равной j / m. Тогда, если срок финансовой операции составляет n лет, выражение для определения наращенной суммы (16) примет вид:

При увеличении числа периодов начисления m будущая величина FV mn также возрастает.

Пример 10

Первоначальная сумма вложения 200 тыс. руб. определить наращенную сумму через пять лет при использовании сложной ставки процентов в размере 28% годовых. Решить пример для случаев, когда проценты начисляются по полугодиям, поквартально.

По формуле (16) для сложных процентных ставок:

FV = 200(1 + 0,28) 5 = 687,2 тыс. руб.

По формуле (17) для начисления по полугодиям:

FV = 200(1 + 0,28 / 2) 10 = 741,4 тыс. руб.

По той же формуле для поквартального начисления:

FV = 200(1 + 0,28 / 4) 20 = 773,9 тыс. руб.

Если срок финансовой операции n в годах не является целым числом, множитель наращения k определяется по формуле:

k = (1 + r) n a (1 + n b × r), (18)

где n = n a + n b ;

n a — целое число лет;

n b — оставшаяся дробная часть года.

На практике в данном случае часто применяют формулу (16) с соответствующим нецелым показателем степени. Однако этот способ является приблизительным. Чем больше значения входящих в формулу величин, тем погрешность при вычислениях будет больше.

Пример 11

Первоначальная сумма долга равна 50 000 тыс. руб. Необходимо определить наращенную сумму через 2,5 года, используя два способа начисления сложных процентов по ставке 25 % годовых.

По формуле (18) получаем:

FV = 50 000(1 + 0,25) 2 (1 + 0,5 × 0,25) = 87 890,6 тыс. руб.

Для второго способа используем формулу (16) с нецелым показателем степени:

FV = 50 000(1 + 0,25) 2,5 = 87 346,4 тыс. руб.

При использовании приблизительного метода упущенная выгода могла бы составить около 550 тыс. руб.

Если начисление сложных процентов осуществляется несколько раз в году и общее число интервалов начисления не является целым числом (mn — целое число интервалов начисления, l — часть интервала начисления), то выражение (17) принимает вид:

(19)

Для целого числа периодов начисления используется формула сложных процентов (16), а для оставшейся части — формула простых процентов (1).

На практике часто возникает необходимость сравнения условий финансовых операций, предусматривающих различные периоды начисления процентов. В этом случае соответствующие процентные ставки приводят к их годовому эквиваленту по формуле:

Полученную при этом величину называют эффективной процентной ставкой (effective percentage rate — EPR), или ставкой сравнения.

Пример 12

На четырехлетний депозит в 10 000 руб. производится ежеквартальное начисление сложных процентов по ставке 2,5 %, то есть из расчета 10 % годовых. Будет ли эквивалентной инвестицией депозит в 10 000 руб., вложенный на тот же срок под 10 %, начисляемых один раз в год?

Рассчитаем эффективную ставку для обеих операций:

  • ежеквартально: EPR = (1 + 0,1 / 4) 4 - 1 = 0,103813;
  • ежегодно: EPR = (1 + 0,1 / 1) 1 - 1 = 0,10.

Таким образом, условия помещения суммы в 10 000 руб. на депозит сроком на четыре года под 2,5 %, начисляемых ежеквартально, будут эквивалентными годовой ставке, равной 10,3813 %. Следовательно, первая операция более выгодна для инвестора.

Если известна величина EPR, номинальная ставка процентов может быть определена следующим образом:

Дисконтирование по сложным процентам

Рассмотрим использование при математическом дисконтировании сложных процентных ставок:

Если проценты будут начисляться m раз в году, то формула (22) примет вид:

Пример 13

Банк производит начисление процентов на внесенную сумму по сложной процентной ставке, равной 20 % в год. Какую сумму следует положить на депозит при условии, что вкладчик рассчитывает получить 10 000 тыс. руб. через 10 лет? Требуется рассмотреть два варианта начисления процентов — ежегодное и ежеквартальное.

При ежегодном начислении процентов по формуле (22):

PV = 10 000 / (1 + 0,2) 10 = 1615,1 тыс. руб.

При ежеквартальном начислении процентов по формуле (23):

PV = 10 000 / (1 + 0,2 / 4) 40 = 1420,5 тыс. руб.

Использование сложной учетной ставки

Для расчета операции дисконтирования по сложной учетной ставке используется формула:

PV n = FV n (1 - d) n . (24)

Пример 14

Владелец векселя номинальной стоимостью 500 тыс. руб. и периодом обращения 1,5 года предложил его банку сразу для учета, то есть за 1,5 года до погашения. Банк согласился учесть вексель по сложной учетной ставке 20 % годовых. Требуется определить дисконт, полученный банком, и сумму, выданную владельцу векселя.

Используя формулу (24), находим:

PV = 500 (1 - 0,2) 1,5 = 357,77 тыс. руб.

Дисконт банка составит: 500 - 357,77 = 142,23 тыс. руб.

Для данных условий определим сумму, которую получил бы владелец векселя, если бы банк произвел учет векселя по простой учетной ставке 20 %. Для этого используем формулу (5):

PV = 500 (1 - 0,2 × 1,5) = 350 тыс. руб.

Дисконт банка составит 500 - 350 = 150 тыс. руб.

Таким образом, банку выгоднее учитывать вексель по простой учетной ставке.

Если дисконтирование по сложной учетной ставке производится m раз в году, расчетная формула будет иметь следующий вид:

Пример 15

Сохраним условия предыдущего примера, но пусть расчет дисконтирования производится ежеквартально, то есть m = 4.

По формуле (25) получим:

PV = 500 (1 - 0,2 / 4) 6 = 367,55 тыс. руб.

Дисконт банка составит: 500 - 367,55 = 132,45 тыс. руб.

Доход банка при ежеквартальном дисконтировании будет меньше, чем при ежегодном дисконтировании, на: 142,23 - 132,45 = 9,78 тыс. руб.

При дисконтировании с начислением процентов за периоды менее года может использоваться понятие «эффективная сложная учетная ставка». Эффективная сложная учетная ставка, эквивалентная сложной учетной ставке при заданном значении m, определяется по формуле:

d эф = 1 - (1 - d / m) m . (26)

Пример 16

Долговое обязательство номинальной стоимостью 500 тыс. руб. должно быть погашено через пять лет. Сложная учетная ставка равна 20 % годовых. Начисление процентов ежеквартальное. Требуется определить настоящую величину стоимости обязательства и эффективную учетную ставку.

Используя формулы (25) и (26), получим:

PV = 500 (1 - 0,2 / 4) 20 = 179,243 тыс. руб.

d эф = 1 - (1 - 0,2 / 4) 4 = 0,18549, или 18,549 %.

Подставив значение 18,549 % в формулу (24), получим:

PV = 500 (1 - 0,18549) 5 = 179,247 тыс. руб.

Расхождение между величинами настоящей суммы, рассчитанными по этим формулам, находятся в пределах точности расчета.

Определение процентной ставки и срока проведения операции

При известных величинах FV, PV и n процентную ставку можно определить по формуле:

Пример 17

Сумма в 10 000 руб., помещенная в банк на четыре года, составила величину 14 641 руб. Необходимо определить доходность операции.

По формуле (27) находим:

r = (14 641 / 10 000) 1/4 - 1 = 0,1, или 10 %.

Длительность операции определяется логарифмированием:

Пример 18

Сумма в 10 000 руб., помещенная в банк под 10 % годовых, составила величину в 14 641 руб. Необходимо определить срок проведения операции.

По формуле (28) находим:

n = log (14 641 / 10 000) / log (1 + 0,1) = 4 года.

Вывод

Приведенные расчетные формулы описывают механизм влияния фактора времени на результат финансовых операций. Их использование позволит избежать ошибок и потерь в условиях снижения покупательной способности денег.

Е. Г. Моисеева,
канд. экон. наук, Арзамасский политехнический институт

Закон наращения по сложной процентной ставке

Если проценты в конце каждого периода начисления не выплачиваются, а присоединяются к основной сумме и полученная величина становится исходной для начисления процентов в следующем периоде, то размер наращенной к концу срока суммы определяется по закону сложных процентов. Присоединение начисленных процентов к сумме, которая служила базой для их определения, называют капитализацией процентов. Начисление сложных процентов обычно применяют в случаях, когда проценты составляют заметную долю первоначальной суммы.

При наращении по сложной процентной ставке при ее фиксированном размере на весь срок кредитования изменение первоначальной суммы Р происходит дискретно, скачками, в конце каждого периода начисления процентов. Так, в конце первого периода величина наращенной суммы S = P (l + i ), в конце второго - S 2 = P (l + i ) 2 и т. д. Таким образом, за весь срок кредитования основная сумма по закону сложных процентов составит

где п - количество периодов начисления процентов (если проценты капитализируются один раз в год, то n - число лет наращения).

Начисление сложных процентов по формуле (1.2.1) за весь срок кредита эквивалентно начислению простых процентов в каждом периоде с присоединением их к основной сумме в начале следующего периода, т. е. реинвестированию средств. В обоих случаях величина наращенной суммы будет одинаковой.

Наращение по сложным процентам следует законам геометрической прогрессии и при большом числе периодов начисления приводит к впечатляющим результатам. В качестве иллюстрации часто приводится следующий пример. Остров Манхэттен, на котором расположен центр Нью-Йорка, был "куплен" в 1624 г. у индейского вождя за 24 доллара. 350 лет спустя стоимость земли оценивалась примерно в 40 млрд. долларов. Однако несложный расчет показывает, что такой головокружительный рост достигается при весьма скромной ставке сложных процентов - 6,3% годовых.

Начисление процентов несколько раз в год

Обычно в финансовых контрактах фиксируются годовая процентная ставка и периодичность начисления процентов: раз в полгода, ежеквартально, ежемесячно и т.д. Если период начисления процентов не равен году, то, как было сказано выше, годовая ставка называется номинальной, а процентная ставка за период начисления равна отношению номинальной ставки к числу периодов в году. Пусть срок контракта равен Т (в годах), а проценты начисляются m раз в год. Тогда общее число периодов начисления за весь срок контракта составит тТ, а наращенная сумма вычисляется по формуле

где s =(1+ i / m ) m - множитель наращения за год, или годовой множитель наращения.

Эта формула следует из (1.2.1) при замене i T (ставки за период начисления процентов) на i / m (номинальную годовую ставку), деленную на число периодов начисления процентов в году, а п (числа периодов начисления процентов в годовом измерении) - на тТ (общее число периодов начисления процентов).

Как видно из приведенного выше примера, при одной и той же номинальной процентной ставке, но разной частоте начисления процентов результаты отличаются: с увеличением количества начислений процентов в году абсолютный годовой доход возрастает. По этой причине номинальная процентная ставка не может служить универсальным измерителем эффективности финансовых операций.

Эффективная процентная ставка

Реальная доходность финансового контракта с начислением сложных процентов несколько раз в год измеряется эффективной процентной ставкой (годовой нормой доходности), которая показывает, какой относительный годовой доход был бы получен за год от начисления процентов. Иными словами, эффективная ставка дает возможность увидеть, какая годовая ставка простых процентов позволит достичь такого же финансового результата, что и m -разовое наращение в год по ставке i / m . При сроке контракта 1 год из формулы (1.2.2) имеем

(1.2.3.а)

где i e - эффективная процентная ставка.

Если период начисления процентов Т не укладывается целое число раз в году, то эффективная ставка i e определяется формулой

Два финансовых контракта считаются эквивалентными (имеющими одинаковую доходность), если соответствующие им эффективные ставки совпадают. По этой причине именно эффективная ставка служит основой для сравнения между собой различных контрактов и определения годовых номинальных ставок для периодов начисления процентов, отличных от года. Таким образом, несмотря на то что в условиях конкретных финансовых контрактов фигурируют годовые номинальные ставки и частоты начисления процентов, их доходность определяется эффективной процентной ставкой. Совокупность эквивалентных номинальных годовых процентных ставок для контрактов с различной частотой начисления процентов раз в год), но с одинаковой доходностью (т. е. эффективной процентной ставкой i e ) задается формулой

Эту формулу легко получить из (1.2.3).

Если период начисления процентов Т не укладывается целое число раз в году, то номинальная процентная ставка, эквивалентная эффективной ставке i e , рассчитывается по формуле

Непрерывное начисление процентов

Увеличение частоты начисления процентов при фиксированном значении номинальной годовой процентной ставки i приводит к росту годового множителя наращения (1.2.2), который при непрерывном начислении процентов (m→∞) достигает своего предельного значения

(1.2.5)

Если же переходить ко все более частому начислению процентов при фиксированной годовой норме доходности, то эквивалентная ей номинальная ставка (при m-кратном начислении процентов) стремиться к величине

Величина d=ln(1+i e ) называется силой роста или непрерывной процентной ставкой.

В дальнейшем, работая со сложными процентами, мы везде, где это не вызовет недоразумений, будем для простоты у i e опускать индекс е, подразумевая, что используется эффективная процентная ставка.

Приращение начальной суммы при непрерывной капитализации процентов будет происходить по закону:

(1.2.7, а)

Номинальная процентная ставка при непрерывном наращении процентов, как уже говорилось, имеет особое название – сила роста. Смысл этого названия становится ясен, если продифференцировать по времени формулу (1.2.7,а):

Отсюда видно, что d есть мгновенная скорость относительного роста инвестированного капитала S .

Закон наращения при непрерывном начислении процентов (1.2.7,а) совпадает по форме с (1.2.2), с той только разницей, что в (1.2.2) время изменяется дискретно, с шагом 1/т , а в (1.2.7,а) – непрерывно. Очевидно, непрерывная кривая (1.2.7,а) является огибающей для ступенчатого графика наращения суммы при любом дискретном начислении процентов, исходя из одинаковой эффективной годовой ставки 60% (см. рис. 1.2.1).

Рис. 1.2.1 иллюстрирует процесс наращения во времени единичной суммы при непрерывном наращении процентов (плавная зависимость) и ежеквартальном начислении процентов (ступенчатая зависимость) для годовой нормы доходности 60%. При ежеквартальном начислении процентов сумма остается неизменной в течение квартала, а в конце его увеличивается скачком в результате присоединения процентов, при непрерывном же начислении процентов сумма нарастает непрерывно. Поскольку оба процесса финансово эквивалентны, то значения наращенной суммы в конце каждого квартала совпадают независимо от способа начисления процентов.

Модель с непрерывным начислением процентов получила широкое распространение в количественном финансово-экономическом анализе благодаря своей простоте и универсальности. Действительно, единственным параметром в этой модели является годовая норма доходности, при этом отсутствует зависимость от срока инвестирования средств и способа начисления процентов. Хотя в практических финансово-кредитных операциях, как правило, применяется инвестирование средств на конечные отрезки времени, но если оно происходит достаточно часто, то его описание с помощью модели с непрерывным наращением процентов дает достаточно высокую точность. Так, график изменения суммы средств в фонде, инвестирующем каждую неделю одинаковые денежные суммы сроком на квартал и затем получающем их обратно с процентами, будет таким же, как при начислении процентов с квартальной суммы один раз в неделю (что практически соответствует непрерывному начислению процентов). Использование модели с непрерывным приращением процентов при анализе сложных финансовых схем практически не имеет альтернативы: чем сложнее система, тем проще должен быть математический аппарат для ее описания.

Рост по простой и сложной непрерывным ставкам

Сравним характер роста единичной суммы по простой процентной ставке и по непрерывной ставке сложных процентов при одинаковой годовой норме доходности. Как видно из рис. 1.2.2, в пределах одного года (0<t <1) рост по непрерывной сложной процентной ставке происходит медленнее, чем по простой. При сроке же, превышающем год, он идет значительно быстрее.

Большинство коммерческих банков начисляют проценты не реже, чем один раз в год. Если срок кредитного соглашения превышает год, то используют два способа. Первый способ предполагает использование общей формулы (1.2.7,а), в которой время наращения t может быть произвольной нецелой величиной. Однако многие банки применяют приближенный метод, согласно которому множитель наращения за целое число лет п вычисляется по закону сложных процентов, а за оставшуюся дробную часть г года начисляются простые проценты:

Приближенный способ более выгоден для кредитора, поскольку рассчитанная по этому методу величина процентов больше, чем при использовании точного метода.

Отметим, что в эпоху всеобщей компьютеризации использование приближенных методов для стандартных расчетов не имеет особого смысла: гораздо проще все расчеты проводить по единой точной формуле, не задумываясь каждый раз – целый срок или нет. Приближенные же методы целесообразнее применять для оценочных расчетов в нестандартных ситуациях.

Оценим погрешность, возникающую при замене внутри года точного закона наращения законом простых процентов. Графически это соответствует замене кривой между годовыми точками прямыми линиями. Будем считать, что годовая норма доходности i одна и та же при начислении простых и сложных непрерывных процентов. Разложим (1.2.7, б) в ряд, считая показатель экспоненты малой величиной:

(1.2.9)

При вычислении (1.2.9) мы учли, что d=ln(1+i )= i - i 2 /2.

Первые два слагаемых дают множитель наращения по закону простых процентов с годовой процентной ставкой, равной i , третье слагаемое – добавку, обусловленную реинвестированием процентов:

Максимальное значение этой величины достигается при t =0,5; D т =- t 2 /8; отношение ко второму слагаемому равно i /4. Отсюда видно, что погрешность вычисления суммы процентов приближенным способом не превышает одного процента, если i £ 0,04 (4% в год).

Переменная процентная ставка

Если уровень процентной ставки будет изменяться в течение срока контракта, то величина наращенной суммы определяется последовательным умножением первоначальной суммы на множители наращения в каждом периоде, где процентная ставка постоянна:

(1.2.10)

где i k , T k номинальная процентная ставка и длительность k -го временного интервала, где ставка постоянна; N – количество временных интервалов с различными процентными ставками.

Если заданы не номинальные, а эффективные процентные ставки, имеем:

(1.2.11)

Расчет ставок сложных процентов в электронных таблицах Excel

Блок "Финансовые функции" в диалоговом окне "Мастер функций" электронных таблиц Excel содержит набор наиболее употребительных в практике финансовых расчетов программ, в том числе и программы расчета процентных ставок.

Функция ЭФФЕКТ при обращении к ней возвращает рассчитанное по формуле (1.2.3) значение эффективной процентной ставки, если задана годовая номинальная процентная ставка / и количество периодов наращения процентов за год т. Обращение к функции ЭФФЕКТ (номинальная_ставка, кол_периодов). Процентная ставка задается либо в относительных величинах, либо в процентах (но тогда после числового значения вводится знак процентов, например 10%). При номинальной ставке 50% годовых и ежемесячном начислении процентов (т = 12) имеем: ЭФФЕКТ (0,5, 12) = 0,63209 - в полном соответствии с результатом примера 1.2.3.

Если задана эффективная процентная ставка, то величина соответствующей ей годовой номинальной процентной ставки рассчитывается по формуле (1.2.4) с помощью функции НОМИНАЛ. Обращение к функции: НОМИНАЛ (эффективная_ставка, кол_периодов). При эффективной ставке 60% в год и ежемесячном начислении процентов = 12) получим: НОМИНАЛ (0,6, 12) = 0,479329 (ср. с примером 1.2.5).

Для расчета наращенной суммы при переменной процентной ставке используется функция БЗРАСПИС. Обращение к функции: БЗРАСПИС (основной_капитал, ставки). Основной капитал - это текущая стоимость инвестиции; ставки - это массив применяемых процентных ставок за периоды, когда ставка постоянна. Результат примера 1.2.7 равен: БЗРАСПИС (1; {0,1125; 0,09375; 0,075}) =1,308057.

Обычно в качестве аргументов в финансовых функциях Excel фигурируют не числа, а адреса ячеек, где эти числа записаны. Это позволяет изменять исходные данные, не меняя программы.

В условиях рыночной экономики любое взаимодействие лиц, фирм и предприятий с целью получения прибыли называется сделкой. При кредитных сделках прибыль представляет собой величину дохода от предоставления денежных средств в долг, что на практике реализуется за счет начисления процентов (процентной ставки – i). Проценты зависят от величины предоставляемой суммы, срока ссуды, условий начисления и т. д.

Важнейшее место в финансовых сделках занимает фактор времени (t). С временным фактором связан принцип неравноценности и неэквивалентности вложений. Для того чтобы определить изменения, происходящие с исходной суммой денежных средств (P), необходимо рассчитать величину дохода от предоставления денег в ссуду, вложения их в виде вклада (депозита), инвестированием их в ценные бумаги и т. д.

Процесс увеличения суммы денег в связи с начислением процентов (i) называют наращением, или ростом первоначальной суммы (P). Таким образом, изменение первоначальной стоимости под влиянием двух факторов: процентной ставки и времени называется наращенной стоимостью (S).

Наращенная стоимость может определяться по схеме простых и сложных процентов. Простые проценты используются в случае, когда наращенная сумма определяется по отношению к неизменной базе, то есть начисленные проценты погашаются (выплачиваются) сразу после начисления (таким образом, первоначальная сумма не меняется); в случае, когда исходная сумма (первоначальная) меняется во временном интервале, имеют дело со сложными процентами.

При начислении простых процентов наращенная сумма определяется по формуле


S = P (1 + i t), (1)

где S – наращенная сумма (стоимость), руб.; P – первоначальная сумма (стоимость), руб.; i – процентная ставка, выраженная в коэффициенте; t – период начисления процентов.

S = 10 000 (1+ 0,13 · 1) = 11 300, руб. (сумма погашения кредита);

ΔР = 11 300 – 10 000 = 1 300, руб. (сумма начисленных процентов).

Определить сумму погашения долга при условии ежегодной выплаты процентов, если банком выдана ссуда в сумме 50 000 руб. на 2 года, при ставке – 16 % годовых.

S = 50 000 (1+ 0,16 · 2) = 66 000, руб.

Таким образом, начисление простых процентов осуществляется в случае, когда начисленные проценты не накапливаются на сумму основного долга, а периодически выплачиваются, например, раз в год, полугодие, в квартал, в месяц и т. д., что определяется условиями кредитного договора. Также на практике встречаются случаи, когда расчеты производятся за более короткие периоды, в частности на однодневной основе.

В случае, когда срок ссуды (вклада и т. д.) менее одного года, в расчетах необходимо скорректировать заданную процентную ставку в зависимости от временного интервала. Например, можно представить период начисления процентов (t) в виде отношения , где q – число дней (месяцев, кварталов, полугодий и т. д.) ссуды; k – число дней (месяцев, кварталов, полугодий и т. д.) в году.

Таким образом, формула (1) изменяется и имеет следующий вид:

S = P (1 + i ). (2)

Банк принимает вклады на срочный депозит на срок 3 месяца под 11 % годовых. Рассчитать доход клиента при вложении 100 000 руб. на указанный срок.

S = 100 000 (1+ 0,11 · ) = 102 749,9, руб.;

ΔР = 102 749,9 – 100 000 = 2 749,9, руб.

В зависимости от количества дней в году возможны различные варианты расчетов. В случае, когда за базу измерения времени берут год, условно состоящий из 360 дней (12 месяцев по 30 дней), исчисляют обыкновенные, или коммерческие проценты. Когда за базу берут действительное число дней в году (365 или 366 – в високосном году), говорят о точных процентах.

При определении числа дней пользования ссудой также применяется два подхода: точный и обыкновенный. В первом случае подсчитывается фактическое число дней между двумя датами, во втором – месяц принимается равным 30 дням. Как в первом, так и во втором случае, день выдачи и день погашения считаются за один день. Также существуют случаи, когда в исчислении применяется количество расчетных или рабочих банковских дней, число которых в месяц составляет 24 дня.

Таким образом, выделяют четыре варианта расчета:

1) обыкновенные проценты с точным числом дней ссуды;

2) обыкновенные проценты с приближенным числом дней ссуды;

3) точные проценты с приближенным числом дней ссуды;

4) точные проценты с банковским числом рабочих дней.

При этом необходимо учесть, что на практике день выдачи и день погашения ссуды (депозита) принимают за один день.

Ссуда выдана в размере 20 000 руб. на срок с 10.01.06 до 15.06.06 под 14 % годовых. Определить сумму погашения ссуды.

1. Обыкновенные проценты с точным числом дней ссуды:

156=21+28+31+30+31+15;

S = 20 000 (1+0,14 · ) =21 213,3, руб.

2. Обыкновенные проценты с приближенным числом дней ссуды:

S = 20 000 (1+0,14 · ) =21 205,6, руб.

3. Точные проценты с приближенным числом дней ссуды:

S = 20 000 (1+0,14 · ) =21 189,0, руб.

4. Точные проценты с банковским числом рабочих дней:

S = 20 000 (1+0,14 · ) =21 516,7, руб.

Данные для расчета количества дней в периоде представлены в прил. 1, 2.

Как сказано выше, кроме начисления простых процентов применяется сложное начисление, при котором проценты начисляются несколько раз за период и не выплачиваются, а накапливаются на сумму основного долга. Этот механизм особенно эффективен при среднесрочных и долгосрочных кредитах.

После первого года (периода) наращенная сумма определяется по формуле (1), где i будет являться годовой ставкой сложных процентов. После двух лет (периодов) наращенная сумма S 2 составит:

S 2 = S 1 (1 + it) = P (1 + it) · (1 + it) = P (1 + it) 2 .

Таким образом, при начислении сложных процентов (после n лет (периодов) наращения) наращенная сумма определяется по формуле

S = P (1 + i t) n , (3)

где i – ставка сложных процентов, выраженная в коэффициенте; n – число начислений сложных процентов за весь период.

Коэффициент наращения в данном случае рассчитывается по формуле


Кн = (1 + i t) n , (4)

где Кн – коэффициент наращения первоначальной стоимости, ед.

Вкладчик имеет возможность поместить денежные средства в размере 75 000 руб. на депозит в коммерческий банк на 3 года под 10 % годовых.

Определить сумму начисленных процентов к концу срока вклада, при начислении сложных процентов.

S = 75 000 (1+ 0,1 · 1) 3 = 99 825, руб.

ΔР = 24 825, руб.

Таким образом, коэффициент наращения составит:

Кн = (1+ 0,1 · 1) 3 = 1,331

Следовательно, коэффициент наращения показывает, во сколько раз увеличилась первоначальная сумма при заданных условиях.

Доля расчетов с использованием сложных процентов в финансовой практике достаточно велика. Расчеты по правилу сложных процентов часто называют начисление процентов на проценты, а процедуру присоединения начисленных процентов – их реинвестированием или капитализацией.



Рис. 1. Динамика увеличения денежных средств при начислении простых и сложных процентов

Из-за постоянного роста базы вследствие реинвестирования процентов рост первоначальной суммы денег осуществляется с ускорением, что наглядно представлено на рис. 1.

В финансовой практике обычно проценты начисляются несколько раз в году. Если проценты начисляются и присоединяются чаще (m раз в год), то имеет место m-кратное начисление процентов. В такой ситуации в условиях финансовой сделки не оговаривают ставку за период, поэтому в финансовых договорах фиксируется годовая ставка процентов i, на основе которой исчисляют процентную ставку за период (). При этом годовую ставку называют номинальной, она служит основой для определения той ставки, по которой начисляются проценты в каждом периоде, а фактически применяемую в этом случае ставку (() mn) – эффективной, которая характеризует полный эффект (доход) операции с учетом внутригодовой капитализации.

Наращенная сумма по схеме эффективных сложных процентов определяется по формуле

S = P (1+ ) mn , (5)

где i – годовая номинальная ставка, %; (1+ ) mn – коэффициент наращения эффективной ставки; m – число случаев начисления процентов за год; mn – число случаев начисления процентов за период.

S = 20 000 (1+ ) 4·1 = 22 950, руб.

Следует отметить, что при периоде, равным 1 году, число случаев начисления процентов за год будет соответствовать числу случаев начисления процентов за весь период. Если, период составляет более 1 года, тогда n (см. формулу (3)) – будет соответствовать этому значению.

S = 20 000 (1+ ) 4·3 = 31 279, 1 , руб.

Начисление сложных процентов также применяется не только в случаях исчисления возросшей на проценты суммы задолженности, но и при неоднократном учете ценных бумаг, определении арендной платы при лизинговом обслуживании, определении изменения стоимости денег под влиянием инфляции и т. д.

Как говорилось выше, ставку, которая измеряет относительный доход, полученный в целом за период, называют эффективной. Вычисление эффективной процентной ставки применяется для определения реальной доходности финансовых операций. Эта доходность определяется соответствующей эффективной процентной ставкой.

I эф = (1+ ) mn – 1 . (6)

Кредитная организация начисляет проценты на срочный вклад, исходя из номинальной ставки 10 % годовых. Определить эффективную ставку при ежедневном начислении сложных процентов.

i = (1+ ) 365 – 1 = 0,115156, т. е. 11 %.

Реальный доход вкладчика на 1 руб. вложенных средств составит не 10 коп. (из условия), а 11 коп. Таким образом, эффективная процентная ставка по депозиту выше номинальной.

Банк в конце года выплачивает по вкладам 10% годовых. Какова реальная доходность вкладов при начислении процентов: а) ежеквартально; б) по полугодиям.

а) i = (1+ ) 4 – 1 = 0,1038, т. е. 10,38 %;

б) i = (1+ ) 2 – 1 = 0,1025, т. е. 10,25 %.

Расчет показывает, что разница между ставками незначительна, однако начисление 10 % годовых ежеквартально выгодней для вкладчика.

Расчет эффективной процентной ставки в финансовой практике позволяет субъектам финансовых отношений ориентироваться в предложениях различных банков и выбрать наиболее приемлемый вариант вложения средств.

В кредитных соглашениях иногда предусматривается изменение во времени процентной ставки. Это вызвано изменением контрактных условий, предоставлением льгот, предъявлением штрафных санкций, а также изменением общих условий совершаемых сделок, в частности, изменение процентной ставки во времени (как правило, в сторону увеличения) связано с предотвращением банковских рисков, возможных в результате изменения экономической ситуации в стране, роста цен, обесценения национальной валюты и т. д.

Расчет наращенной суммы при изменении процентной ставки во времени может осуществляться как начислением простых процентов, так и сложных. Схема начисления процентов указывается в финансовом соглашении и зависит от срока, суммы и условий операции.

Пусть процентная ставка меняется по годам. Первые n 1 лет она будет равна i 1 , n 2 – i 2 и т. д. При начислении на первоначальную сумму простых процентов необходимо сложить процентные ставки i 1 , i 2 , i n , а при сложных – найти их произведение.

При начислении простых процентов применяется формула

S = P (1+i 1 t 1 + i 2 t 2 + i 3 t 3 + i n t n) , (7)

где i n – ставка простых процентов; t n – продолжительность периода начисления.

В первый год на сумму 10 000 руб. начисляются 10 % годовых, во второй – 10,5 % годовых, в третий – 11 % годовых. Определить сумму погашения, если проценты выплачиваются ежегодно.

S = 10 000 (1+0,10 · 1 +0,105 · 1 + 0,11 · 1)=13 150, руб.;

ΔР = 3 150, руб.

При начислении сложных процентов применяется формула

S = P(1+i 1 t 1)·(1+ i 2 t 2)·(1+ i 3 t 3)·(1+ i n t n) (8)

где i n – ставка сложных процентов; t n – продолжительность периода ее начисления.

В первый год на сумму 10 000 руб. начисляются 10 % годовых, во второй – 10,5 % годовых, в третий – 11 % годовых. Определить сумму погашения, если проценты капитализируются.

S = 10 000 (1+0,10 · 1)·(1 +0,105 · 1)·(1 + 0,11 · 1)= 13 492, 05, руб.


Приведенные примеры подтверждают тот факт, что начисление простых процентов связано с определением наращенной суммы по отношению к неизменной базе, т. е. каждый год (период) проценты начисляются на одну и ту же первоначальную стоимость. Если рассмотреть пример 10, то в этом случае наращенная стоимость составит:

– за первый год: S 1 = 10 000 (1+0,10 · 1) = 11 000, руб.;

ΔР 1 = 1 000, руб.;

– за второй год: S 2 = 10 000 (1+0,105 · 1) = 11 050, руб.;

ΔР 2 = 1 050, руб.;

– за третий год: S 3 = 10 000 (1+0,11 · 1) = 11 100, руб.;

ΔР 3 = 1 100, руб.

Таким образом, сумма процентов за 3 года составит:

ΔР = 1 000+1 050+1 100 = 3 150, руб. (см. пример 10).

В случае начисления сложных процентов, исходная сумма меняется после каждого начисления, так как проценты не выплачиваются, а накапливаются на основную сумму, т. е. происходит начисление процентов на проценты. Рассмотрим пример 11:

– в первом году: S 1 = 10 000 (1+0,10 · 1) = 11 000, руб.;

– во втором году: S 2 = 11000 (1+0,105 · 1) = 12 100, руб.;

– в третьем году: S 3 = 12100 (1+0,11 · 1) = 13 431, руб.

Таким образом, сумма процентов за 3 года составит: i 3 = 3 431, руб. (см. пример 10).

При разработке условий контрактов или их анализе иногда возникает необходимость в решении обратных задач – определение срока операции или уровня процентной ставки.

Формулы для расчета продолжительности ссуды в годах, днях и т. д. можно рассчитать, преобразуя формулы (1) и (5).

Срок ссуды (вклада):

t = · 365 . (9)

Определить на какой срок вкладчику поместить 10 000 руб. на депозит при начислении простых процентов по ставке 10 % годовых, чтобы получить 12 000 руб.

t = () · 365 = 730 дней (2 года).

Клиент имеет возможность вложить в банк 50 000 руб. на полгода. Определить процентную ставку, обеспечивающую доход клиента в сумме 2 000 руб.


t = () = 0,08 = 8 % годовых

Аналогично определяется необходимый срок окончания финансовой операции и ее протяженность, либо размер требуемой процентной ставки при начислении сложных процентов.

Для упрощения расчетов значения коэффициента (множитель) наращения представлены в прил. 3.

Новое на сайте

>

Самое популярное